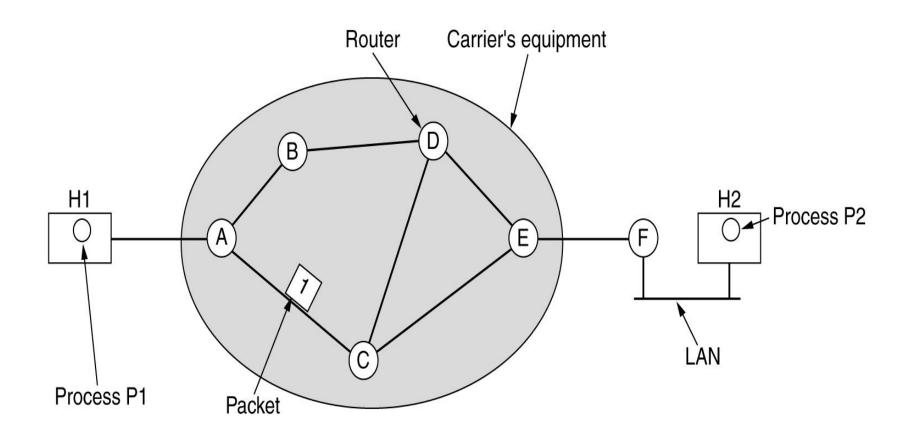


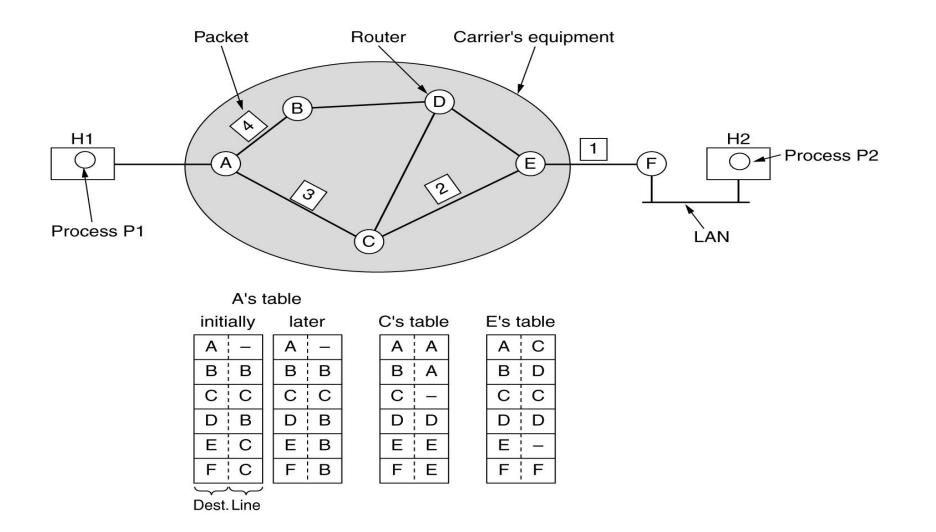
FACULTY OF ENGINEERING & TECHNOLOGY

BCA-302Computer Networks

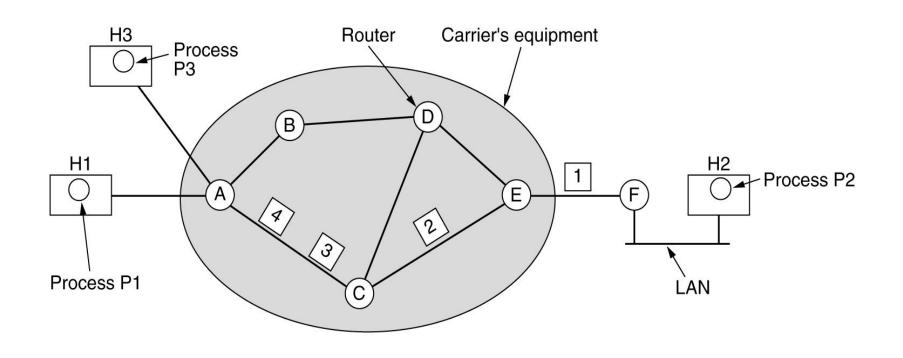
Lecture-19

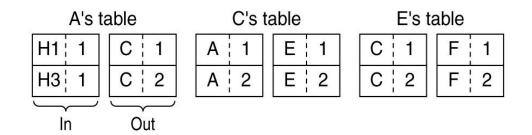

Mr. Dilip Kumar J Saini

Assistant Professor Computer Science & Engineering


OUTLINE

- >THE NETWORK LAYER PROBLEM PACKET SWITCHING
- >THE NETWORK LAYER PROBLEM : CONNECTIONLESS SERVICE
- >THE PROBLEM NETWORK LAYER: CONNECTION-ORIENTED SERVICE
- >CONNECTIONLESS VS. CONNECTION-ORIENTED
- >SHORTEST PATH ALGORITHM


THE NETWORK LAYER PROBLEM PACKET SWITCHING



THE NETWORK LAYER PROBLEM: CONNECTIONLESS SERVICE

THE PROBLEM NETWORK LAYER: CONNECTION-ORIENTED SERVICE

CONNECTIONLESS VS. CONNECTION-ORIENTED

Issue	Datagram subnet	Virtual-circuit subnet	
Circuit setup	Not needed	Required	
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number	
State information	Routers do not hold state information about connections	Each VC requires router table space per connection	
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it	
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated	
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC	
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC	

SHORTEST PATH ALGORITHM

The first 5 steps used in computing the shortest path from A to D.

The arrows indicate the working node.

Multiple Choice Question

MUTIPLE CHOICE QUESTIONS:

Sr no	Question	Option A	Option B	OptionC	OptionD
1	Most packet switches use this principle	Stop and wait	Store and forward	Store and wait	Stop and forward
	If there are N routers from source to destination, the total end to end delay in sending packet P(L-> number of bits in the packet R-> transmission rate) is equal to	N	(N*L)/R	(2N*L)/R	L/R
3	What are the Methods to move data through a network of links and switches?	and I in a switching	Circuit switching and Line switching	and bit switching	Packet switching and Circuit switching
4	The required resources for communication between end systems are reserved for the duration of the session between end systems in method.	Packet switching	Circuit switching		Frequency switching
5	As the resources are reserved between two communicating end systems in circuit switching, is achieved.	authentication	guaranteed constant rate	reliability	store and forward

REFERENCES

http://www.engppt.com/2009/12/networking-fourozan-ppt-slides.html

