

Faculty of Engineering and Technology

Discrete Structure (BCA-309)

Somendra Tripathi Assistant Professor Computer Science and Engineering

Outlines

- Set Operations
- The Union Operator
- The Intersection Operator

- The complement of a set A contains exactly those elements under consideration that are not in A: denoted A^c (or A as in the text)
- $A^c = U A$
- Example: U = N, B = {250, 251, 252, ...}

 $B^{c} = \{0, 1, 2, ..., 248, 249\}$

The Union Operator

For sets A, B, their union A∪B is the set containing all elements that are either in A, or ("∨") in B (or, of course, in both).

lired Form

- Formally, $\forall A, B: A \cup B = \{x \mid x \in A \lor x \in B\}.$
- Note that $A \cup B$ contains all the elements of A and it contains all the elements of B:

 $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$

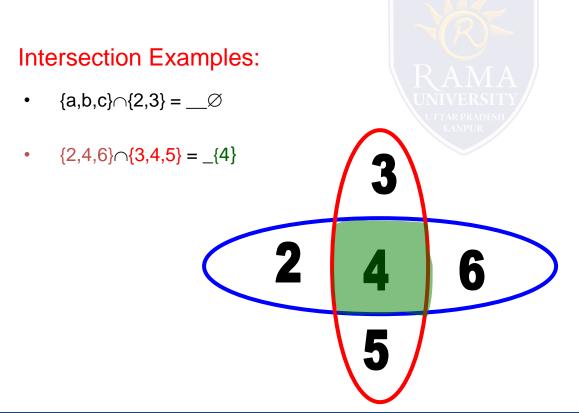
Union Examples:

- {a, b,c} \cup {2,3} = {a,b,c,2,3}
- $\{2,3,5\}\cup\{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}$

The Intersection Operator

- For sets A, B, their intersection A∩B is the set containing all elements that are simultaneously in A and ("∧") in B.
- Formally, $\forall A, B: A \cap B = \{x \mid x \in A \land x \in B\}.$
- Note that $A \cap B$ is a subset of A and it is a subset of B:

 $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$



The Power Set

- The *power set* P(S) of a set S is the set of all subsets of S. $P(S) = \{x \mid x \subseteq S\}$.
- $E.g. P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$
- Sometimes P(S) is written 2^S.
 Note that for finite S, |P(S)| = 2^{|S|}.
- It turns out that |P(N)| > |N|.
 There are different sizes of infinite sets!
- P(A) "power set of A" (also written as 2^A)
- $P(A) = \{B \mid B \subseteq A\}$ (contains all subsets of A)

Examples:

- $A = \{x, y, z\}$
- $\bullet \qquad \mathsf{P}(\mathsf{A}) = \{ \varnothing, \, \{x\}, \, \{y\}, \, \{z\}, \, \{x, \, y\}, \, \{x, \, z\}, \, \{y, \, z\}, \, \{x, \, y, \, z\} \}$
- A = Ø
- $P(A) = \{\emptyset\}$

Note: |A| = 0, |P(A)| = 1

The Power Set

- Cardinality of power sets: | P(A) | = 2^{|A|}
- Imagine each element in A has an "on/off" switch
- Each possible switch configuration in A corresponds to one subset of A, thus one element in P(A)

A	1	2	3	4	5	6	7	8
×	X	X	X	X	×	X	×	×
У	Y	Y	У	У	Y	Y	У	У
Z	Z	z	Z	Z	Z	z	Ζ	z

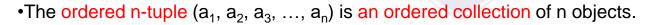
• For 3 elements in A, there are $2 \times 2 \times 2 = 8$ elements in P(A)

Cartesian Products of Sets

• For sets A, B, their Cartesian product

 $A \times B := \{(a, b) \mid a \in A \land b \in B\}.$

- *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B, $|A \times B| = |A||B|$.
- Note that the Cartesian product is **not** commutative: $\neg \forall AB$: $A \times B = B \times A$.
- Extends to $A_1 \times A_2 \times \ldots \times A_n \ldots$



•Two ordered n-tuples $(a_1, a_2, a_3, ..., a_n)$ and

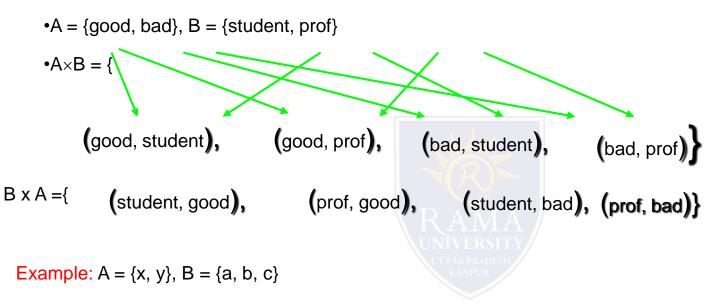
 $(b_1, b_2, b_3, ..., b_n)$ are equal if and only if they contain exactly the same elements in the same order, i.e. $a_i = b_i$ for $1 \le i \le n$.

•The Cartesian product of two sets is defined as:

 $\bullet A \times B = \{(a, b) \mid a \in A \land b \in B\}$

Cartesian Product

•Example:



```
A \times B = \{(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)\}
```

Note that:

- $A \times \emptyset = \emptyset$
- $\varnothing \times A = \varnothing$
- For non-empty sets A and B: $A \neq B \Leftrightarrow A \times B \neq B \times A$
- $|A \times B| = |A| \cdot |B|$

•The Cartesian product of two or more sets is defined as: •A₁×A₂×...×A_n = {(a₁, a₂, ..., a_n) | $a_i \in A_i$ for $1 \le i \le n$ }

Set Operations

• Union: $A \cup B = \{x \mid x \in A \lor x \in B\}$

Example: $A = \{a, b\}, B = \{b, c, d\}$

- A\cup B = {a, b, c, d}
- Intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$

Example: $A = \{a, b\}, B = \{b, c, d\}$

• Cardinality:
$$|A \cup B| = |A| + |B| - |A \cap B|$$

•Two sets are called disjoint if their intersection is empty, that is, they share no elements: •A \cap B = \varnothing

The difference between two sets A and B contains exactly those elements of A that are not in B:
A-B = {x | x∈A ∧ x∉B}
Example: A = {a, b}, B = {b, c, d}, A-B = {a}

•Cardinality: $|A-B| = |A| - |A \cap B|$

