

FACULTY OF EGINEERING

DATA MINING & WAREHOUSEING LECTURE-18

MR. DHIRENDRA ASSISTANT PROFESSOR RAMA UNIVERSITY

OUTLINE

- *** MOTIVATION**
- ✤ DATA MINING
- ***** THREE LEVELS OF TESTING
- EVOLUTION OF DATABASE TECHNOLOGY
- *** WHAT IS DATA MINING**
- ✤ DATA MINING ALGORITHM
- ✤ DATA MINING PROCESS
- * MCQ
- ✤ REFERENCES

Motivation

□ In real world applications data can be inconsistent incomplete and or noisy.

Errors can happen:

- □ Faulty data collection instruments
- Data entry problems.
- L Human misjudgment during data entry
- Data transmission problems.
- Technology limitations
- Discrepancy in naming conventions

Results:

- Duplicated records
- Incomplete data
- Contradictions in data.

Data Mining

□ The Explosive Growth of Data: from terabytes to petabytes

- Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
- Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras

U We are drowning in data, but starving for knowledge!

□ "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

1960s:

Data collection, database creation, IMS (Information Management System) and network DBMS

1970s:

Relational data model, relational DBMS implementation

1980s:

RDBMS, advanced data models (extended-relational, OO, deductive, etc.)

Application-oriented DBMS (spatial, scientific, engineering, etc.)

1990s:

Data mining, data warehousing, multimedia databases, and Web databases

2000s

Stream data management and mining

Data mining and its applications

Web technology (XML, data integration) and global information systems

What Is Data Mining?

Data mining (knowledge discovery from data)

- Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data
- Data mining: a misnomer?
- The exploration and analysis, by Automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns.
- The extraction of implicit, previously unknown, and potentially useful information from data or the process of discovery advantages patterns in data.

Alternative names

 Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.

Watch out: Is everything "data mining"?

- Simple search and query processing
- (Deductive) expert systems

Data Mining Algorithm

Objective: Fit Data to a Model

- Descriptive (characterize the general properties of the data in the database)
- Predictive (perform inference on the current data in order to make prediction)
- **Preference** Technique to choose the best model
- Search Technique to search the data
 - "Query"

Data Mining Process

Define & Understanding the Problem.

Data Warehousing

- Collect / Extract data
- Clean Data
- Data Engineering
- □ Algorithm selection / Engineering
- **Q** Run Mining Algorithm
- □ Analyze the Results

Multiple Choice Question

- 1. The dimension tables describe the
- a) entities
- b) facts
- c) keys
- d) units of measures.
- 2.. The granularity of the fact is the _____ of detail at which it is recorded.
- a) transformation
- b) summarization
- c) level
- d) transformation and summarization.
- 3. Which of the following is not a primary grain in analytical modeling?
- a) Transaction
- b) Periodic snapshot.
- c) Accumulating snapshot.
- d) All of the above.

- 4. Granularity is determined by _____.
- a) number of parts to a key.
- b) granularity of those parts.
- c) both A and B.
- d) none of the above.

5. ______ of data means that the attributes within a given entity are fully dependent on the entire primary key of the entity.

- a) Additivity
- b) Granularity
- c) Functional dependency.
- d) Dimensionality.

REFERENCES

- <u>https://www.tutorialspoint.com/dwh/dwh_overview.htm</u>
- <u>http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-</u> <u>Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf</u> DATA MINING BOOK WRITTEN BY Micheline Kamber
- <u>https://www.javatpoint.com/three-tier-data-warehouse-architecture</u>
- M.H. Dunham, "Data Mining: Introductory & Advanced Topics" Pearson Education
- Jiawei Han, Micheline Kamber, "Data Mining Concepts & Techniques" Elsevier
- Sam Anahory, Denniss Murray," data warehousing in the Real World: A Practical Guide for Building Decision Support Systems, " Pearson Education
- Mallach," Data Warehousing System", TMH
- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE'97 S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997
- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB'96 D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD'97
- E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computer World, 27, July 1993.
- J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.