

FACULTY OF EGINEERING

DATA MINING & WAREHOUSEING LECTURE-01

MR. DHIRENDRA

ASSISTANT PROFESSOR RAMA UNIVERSITY

OUTLINE

- **❖ DATA WAREHOUSING**
- *** DATA WAREHOUSE INFORMATION**
- **❖ INTEGRATING HETEROGENEOUS DATABASES**
- **QUERY-DRIVEN APPROACH**
- **UPDATE-DRIVEN APPROACH**
- *** FUNCTIONS OF DATA WAREHOUSE TOOLS AND UTILITIES**
- **❖** MCQ
- *** REFERENCES**

DATA WAREHOUSING

- Process of constructing and using a data warehouse.
- •constructed by integrating data from multiple heterogeneous sources
- •that support analytical reporting, structured and/or ad hoc queries, and decision making.
- •involves data cleaning, data integration, and data consolidations.

DATA WAREHOUSE INFORMATION

- · decision support technologies that help utilize the data available in a data warehouse.
- help executives to use the warehouse quickly and effectively.
- They can gather data, analyze it, and take decisions based on the information present in the warehouse.
- The information gathered in a warehouse can be used in any of the following domains
 - Tuning Production Strategies The product strategies can be well tuned by repositioning the
 products and managing the product portfolios by comparing the sales quarterly or yearly.
 - Customer Analysis Customer analysis is done by analyzing the customer's buying preferences, buying time, budget cycles, etc.
 - Operations Analysis Data warehousing also helps in customer relationship management, and making environmental corrections. The information also allows us to analyze business operations.

INTEGRATING HETEROGENEOUS DATABASES

- Query-driven Approach
- Update-driven Approach

QUERY-DRIVEN APPROACH

Query-Driven Approach

- traditional approach to integrate heterogeneous databases.
- used to build wrappers and integrators on top of multiple heterogeneous databases
- integrators are also known as mediators.

Process of Query-Driven Approach

- When a query is issued to a client side, a metadata dictionary translates the query into an appropriate form for individual heterogeneous sites involved.
- Now these queries are mapped and sent to the local query processor.
- The results from heterogeneous sites are integrated into a global answer set.

Disadvantages

- Query-driven approach needs complex integration and filtering processes.
- This approach is very inefficient.
- It is very expensive for frequent queries.
- This approach is also very expensive for queries that require aggregations.

UPDATE-DRIVEN APPROACH

Update-Driven Approach

- Alternative to the traditional approach.
- Information from multiple heterogeneous sources are integrated in advance and are stored in a warehouse.
- This information is available for direct querying and analysis.

Advantages

- This approach has the following advantages –
- This approach provide high performance.
- The data is copied, processed, integrated, annotated, summarized and restructured in semantic data store in advance.
- Query processing does not require an interface to process data at local sources.

FUNCTIONS OF DATA WAREHOUSE TOOLS AND UTILITIES

Data Extraction -

Involves gathering data from multiple heterogeneous sources.

Data Cleaning -

Involves finding and correcting the errors in data.

Data Transformation -

Involves converting the data from legacy format to warehouse format.

Data Loading -

Involves sorting, summarizing, consolidating, checking integrity, and building indices and partitions.

Refreshing -

Involves updating from data sources to warehouse.

Multiple Choice Question

1.	The time horizon in Data warehouse is	4	is the h	neart of the warehouse.
	usually	a)	Data mining datab	ase servers.
a)	1-2 years.	b)	Data warehouse of	latabase servers.
b)	3-4years.	c)	Data mart database servers.	
c)	•	ď)	Relational data base servers.	
•	5-10 years	,		
,		5.		_ is the specialized data
2	The data is stored, retrieved & updated in		ehouse database.	- ·
		a)	Oracle	
a)	OLAP	b)	DBZ	
b)		c)	Informix	
c)		$\left(\frac{\Delta}{d} \right)$	Redbrick	
ď)		NĪVĒRS		
3.				
the	e data warehouse.			
a)	Relational data.			
b)				
c)	•			
ď)				

REFERENCES

- https://www.tutorialspoint.com/dwh/dwh_overview.htm
- http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf

DATA MINING BOOK WRITTEN BY Micheline Kamber

