

FACULTY OF EGINEERING

DATA MINING & WAREHOUSEING LECTURE-32

MR. DHIRENDRA ASSISTANT PROFESSOR RAMA UNIVERSITY

OUTLINE

- **CLASS CHARACTERIZATION: AN EXAMPLE**
- *** PRESENTATION OF GENERALIZED RESULTS**
- ✤ PRESENTATION—GENERALIZED RELATION
- * PRESENTATION—CROSSTAB
- ✤ IMPLEMENTATION BY CUBE TECHNOLOGY
- * MCQ
- REFERENCES

Prime M Sc		M M e ee F 	C C Ph ned Sci	MajorBirth-PlaCSVancouve CanadaCSMontreal CanadaPhysicsSeattle, WASci,Eng, BusCountry		er,BC, 8-12-76 , Que, 28-7-75		Residence 3511 Main St., Richmond 345 1st Ave., Richmond 125 Austin Ave., Burnaby City		Phone # 687-4598 253-9106 420-5232 Removed	GPA 3.67 3.70 3.83 Excl, VG,	
		M Science F Science		ence Canada ence Foreign		20- 25-	ge_range Residence 20-25 Richmond 25-30 Burnaby mada Foreign		nond Very-good		Count 16 22 	
		Ge	Canad			Total						
				M F		16 10		14 22		30 32		
				r Total		26		36		62		

Generalized relation

- Relations where some or all attributes are generalized, with counts or

oth ti er aggregation values accumultd a e .

- Cross tabulation
- Mapping Mapping results results into cross tabulation tabulation form (similar (similar to contingency contingency tables).
- Visualization techniques:
- Pie charts, bar charts, curves, cubes, and other visual forms.
- Quantitative characteristic rules
- Mapping generalized result into characteristic rules with quantitative

information associated with associated with it

location	item	sales (in million dollars)	count (in thousands)
Asia	TV	15	300
Europe	TV	12	250
North_America	TV	28	450
Asia	$\operatorname{computer}$	120	1000
Europe	$\operatorname{computer}$	150	1200
$North_America$	$\operatorname{computer}$	200	1800

$location \setminus item$]]	ΓV	com	puter	both_	items.	
	sales	count	sales	count	$_{sales}$	count	
Asia	15	300	120	1000	135	1300	
Europe	12	250	150	1200	162	1450	
North_America	28	450	200	1800	228	2250	
all_regions	45	1000	470	4000	525	5000	

Implementation by Cube Technology

Construct a data cube on-the-fly for the given data

mining query

- Facilitate efficient drill-down analysis
- May increase the response time
- A balanced balanced solution: solution: precomputation precomputation of "subprime subprime"
 relation
- Use a predefined & precomputed data cube
- Construct a data cube beforehand
- Facilitate not only the attribute-oriented induction, but

also attribute attribute relevance relevance analysis analysis, dicing slicing, slicing, roll-up and drill-down

- Cost of cube computation and the nontrivial storage

overhead

Multiple Choice Question

- 1. Various visualization techniques are used in ______ step of KDD.
- a) selection
- b) transformaion
- c) data mining.
- d) interpretation.
- 2. Extreme values that occur infrequently are called as _____.
- a) outliers
- b) rare values.
- c) dimensionality reduction.
- d) All of the above.
- 3. Box plot and scatter diagram techniques

are _____.

- a) Graphical
- b) Geometric
- c) Icon-based.
- d) Pixel-based.

- 4. _____ is used to proceed from very specific knowledge to more general information.
- a) Induction
- b) Compression.
- c) Approximation.
- d) Substitution.
- 5. Describing some characteristics of a set of data by a general model is viewed as _____
- a) Induction
- b) Compression
- c) Approximation
- d) Summarization

REFERENCES

- <u>https://www.tutorialspoint.com/dwh/dwh_overview.htm</u>
- <u>https://www.geeksforgeeks.org/</u>
- <u>http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-</u> <u>Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf</u> DATA MINING BOOK WRITTEN BY Micheline Kamber
- <u>https://www.javatpoint.com/three-tier-data-warehouse-architecture</u>
- M.H. Dunham, "Data Mining: Introductory & Advanced Topics" Pearson Education
- Jiawei Han, Micheline Kamber, "Data Mining Concepts & Techniques" Elsevier
- Sam Anahory, Denniss Murray," data warehousing in the Real World: A Practical Guide for Building Decision Support Systems, " Pearson Education
- Mallach," Data Warehousing System", TMH
- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE'97 S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997
- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB'96 D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD'97
- E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computer World, 27, July 1993.
- J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.