

FACULTY OF EGINEERING

DATA MINING & WAREHOUSEING LECTURE-37

MR. DHIRENDRA

ASSISTANT PROFESSOR RAMA UNIVERSITY

OUTLINE

- **QUANTITATIVE DISCRIMINANT RULES**
- *** EXAMPLE: QUANTITATIVE DISCRIMINANT RULE**
- *** CLASS DESCRIPTION**
- **EXAMPLE: QUANTITATIVE DESCRIPTION RULE**
- *** MINING DATA DISPERSION CHARACTERISTICS**
- ❖ MCQ
- *** REFERENCES**

Quantitative Discriminant Rules

- Cj = target class
- q_a = a generalized tuple covers some tuples of class
 - but can also cover some tuples of contrasting class
- d-weight
 - range: [0, 1]

$$d-weight = \frac{count(q \ a \in C_j)}{\sum_{i=1}^{m} count(q \ a \in C_i)}$$

quantitative discriminant rule form

 $\forall X$, $target_class(X) \Leftarrow condition(X) [d:d_weight]$

Example: Quantitative Discriminant Discriminant Rule

Status	Birth_country	Age_range	Gpa	Count
Graduate	Canada	25-30	Good	90
Undergraduate	Canada	25-30	Good	210

Count distribution between graduate and undergraduate students for a generalized tuple

Quantitative discriminant rule

```
\forall X, \ graduate\_studen(X) \Leftarrow
birth\_country(X) = "Canadd' \land age\_range(X) = "25-30" \land gpa(X) = "good" \ [d:30\%]
- \ where 90/(90+120) = 30\%
```

Quantitative characteristic rule

```
\forall X, target\_class(X) \Rightarrow condition(X) [t:t_weight]
- necessary
```

Quantitative discriminant rule

```
\forall X, target\_class(X) \Leftarrow condition(X) [d:d_weight]
```

- sufficient
- Quantitative description rule

```
\forall X, target\_class(X) \Leftrightarrow
condition_{1}(X)[t:w_{1},d:w'_{1}] \lor ... \lor condition_{n}(X)[t:w_{n},d:w'_{n}]
```

necessary and sufficient

Example: Quantitative Description Rule

Location/item		TV			Computer			Both_items	
	Count	t-wt	d-wt	Count	t-wt	d-wt	Count	t-wt	d-wt
Europe	80	25%	40%	240	75%	30%	320	100%	32%
N_Am	120	17.65%	60%	560	82.35%	70%	680	100%	68%
Both_ regions	200	20%	100%	800	80%	100%	1000	100%	100%

Crosstab showing associated t-weight, d-weight values and total number (in thousands) of TVs and computers sold at AllElectronics in 1998

Quantitative description rule for target class Europe

 $\forall X, Europe(X) \Leftrightarrow$

(item(X)="TV")[t:25%,d:40%]\(\sigma(item(X)="computer")[t:75%,d:30%]

Mining Data Dispersion Characteristics

Motivation

- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
- median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions -correspond to sorted intervals
- Data dispersion: analyzed with multiple granularities of precision
- Boxplot Boxplot or quantile quantile analysis analysis on sorted intervals intervals
- Dispersion analysis on computed measures
- Folding measures into numerical dimensions
- Boxplot or quantile analysis on the transformed cube

Multiple Choice Question

1.	Various visualization techniques are used	4.	is used to proceed from very specific
	in step of KDD.	kno	owledge to more general information.
a)	selection	a)	Induction
b)	transformaion	b)	Compression.
c)	data mining.	c)	Approximation.
ď)	interpretation.	ď)	Substitution.
2. E	Extreme values that occur infrequently are	5.	Describing some characteristics of a set of data by
call	ed as	a g	eneral model is viewed as
a)	outliers	a)	Induction
b)	rare values.	b)	Compression
c)	dimensionality reduction.	c)	Approximation
,	All of the above.		Summarization
_			
	Box plot and scatter diagram techniques		
are	.		
a)	Graphical		
b)	Geometric		
c)	Icon-based.		
d)	Pixel-based.		

REFERENCES

- https://www.tutorialspoint.com/dwh/dwh overview.htm
- https://www.geeksforgeeks.org/
- http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf
 DATA
 MINING BOOK WRITTEN BY Micheline Kamber
- https://www.javatpoint.com/three-tier-data-warehouse-architecture
- M.H. Dunham, "Data Mining: Introductory & Advanced Topics" Pearson Education
- Jiawei Han, Micheline Kamber, "Data Mining Concepts & Techniques" Elsevier
- Sam Anahory, Denniss Murray," data warehousing in the Real World: A Practical Guide for Building Decision Support Systems, "
 Pearson Education
- Mallach," Data Warehousing System", TMH
- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE'97 S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997
- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB'96 D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD'97
- E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computer World, 27, July 1993.
- J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.