

FACULTY OF EGINEERING

DATA MINING & WAREHOUSEING LECTURE-38

MR. DHIRENDRA

ASSISTANT PROFESSOR RAMA UNIVERSITY

OUTLINE

- *** MEASURING THE CENTRAL TENDENCY**
- *** MEASURING THE DISPERSION OF DATA**
- *** BOXPLOT ANALYSIS**
- ***** BOXPLOT
- **VISUALIZATION OF DATA DISPERSION: BOXPLOT ANALYSIS**
- ❖ MCQ
- *** REFERENCES**

Measuring the Central Tendency

• Mean
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Weighted arithmetic mean

$$\overline{x} = \frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}$$

- Median: A holistic measure
 - Middle value if odd number of values, or average of the middle two $median = L_1 + (\frac{n/2 - (\sum f)l}{f})c$ values otherwise
 - estimated by interpolation

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal

- Empirical formula:
$$mean-mode=3\times(mean-median)$$

Measuring the Dispersion of Data

Quartiles, outliers and boxplots

- Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
- Inter-quartile range: IQR = Q₃ Q₁
- Five number summary: min, Q₁, M, Q₃, max
- Boxplot: ends of the box are the quartiles, median is marked, whiskers, and plot outlier individually
- Outlier: usually, a value higher/lower than 1.5 x IQR

Variance and standard deviation

Variance s²: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

Standard deviation s is the square root of variance s²

Boxplot Analysis

Five-number summary of a distribution:

Minimum, Q1, M, Q3, Maximum

- Boxplot
 - Data is represented with a box
 - The ends of the box are at the first and third quartiles, i.e.,
 the height of the box is IRQ
 - The median is marked by a line within the box
 - Whiskers: two lines outside the box extend to Minimum and Maximum

Visualization of Data Dispersion: Boxplot Analysis

Multiple Choice Question

1.	Various visualization techniques are used	4.	is used to proceed from very specific
	in step of KDD.	kno	owledge to more general information.
a)	selection	a)	Induction
b)	transformaion	b)	Compression.
c)	data mining.	c)	Approximation.
ď)	interpretation.	ď)	Substitution.
2. E	Extreme values that occur infrequently are	5.	Describing some characteristics of a set of data by
call	ed as	a g	eneral model is viewed as
a)	outliers	a)	Induction
b)	rare values.	b)	Compression
c)	dimensionality reduction.	c)	Approximation
,	All of the above.		Summarization
2			
3. Box plot and scatter diagram techniques			
are	·		
a)	Graphical		
b)	Geometric		
c)	Icon-based.		
d)	Pixel-based.		

REFERENCES

- https://www.tutorialspoint.com/dwh/dwh overview.htm
- https://www.geeksforgeeks.org/
- http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf
 DATA
 MINING BOOK WRITTEN BY Micheline Kamber
- https://www.javatpoint.com/three-tier-data-warehouse-architecture
- M.H. Dunham, "Data Mining: Introductory & Advanced Topics" Pearson Education
- Jiawei Han, Micheline Kamber, "Data Mining Concepts & Techniques" Elsevier
- Sam Anahory, Denniss Murray," data warehousing in the Real World: A Practical Guide for Building Decision Support Systems, "
 Pearson Education
- Mallach," Data Warehousing System", TMH
- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE'97 S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997
- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB'96 D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD'97
- E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computer World, 27, July 1993.
- J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.