

FACULTY OF EGINEERING

DATA MINING & WAREHOUSEING LECTURE-39

MR. DHIRENDRA

ASSISTANT PROFESSOR RAMA UNIVERSITY

OUTLINE

- *** MEASURING THE CENTRAL TENDENCY**
- *** HISTOGRAM ANALYSIS**
- **QUANTILE PLOT**
- *** QUANTILE-QUANTILE (Q-Q) PLOT**
- **SCATTER PLOT**
- **❖** MCQ
- *** REFERENCES**

Measuring the Central Tendency

Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right]$$

- Standard deviation: the square root of the variance
 - Measures spread about the mean
 - It is zero if and only if all the values are equal
 - Both the deviation and the variance are algebraic

Histogram Analysis

Graph displays of basic statistical class descriptions

- Frequency histograms
- A univariate graphical method
- Consists of a set of rectangles that reflect the counts or frequencies

of the classes present in the given data

Quantile Plot

Displays all of the data (allowing the user to assess

both the overall behavior and unusual occurrences)

- Plots quantile information
- For a data xi data sorted in increasing order, fi indicates

that approximately 100 fi% of the data are below or equal

to the value x

Quantile-Quantile (Q-Q) Plot

Graphs the quantiles of one univariate distribution

against the corresponding quantiles of another

• Allows the user to view where there s a shift in going from one distribution to another

Scatter plot

Provides a first look at bivariate data to see clusters

of points, outliers, etc

• Each pair of values is treated as a pair of coordinates

and plotted as points in the plane

Multiple Choice Question

1.	Various visualization techniques are used	4.	is used to proceed from very specific
	in step of KDD.	kno	owledge to more general information.
a)	selection	a)	Induction
b)	transformaion	b)	Compression.
c)	data mining.	c)	Approximation.
ď)	interpretation.	ď)	Substitution.
2. E	Extreme values that occur infrequently are	5.	Describing some characteristics of a set of data by
call	ed as	a g	eneral model is viewed as
a)	outliers	a)	Induction
b)	rare values.	b)	Compression
c)	dimensionality reduction.	c)	Approximation
,	All of the above.		Summarization
2			
3. Box plot and scatter diagram techniques			
are	·		
a)	Graphical		
b)	Geometric		
c)	Icon-based.		
d)	Pixel-based.		

REFERENCES

- https://www.tutorialspoint.com/dwh/dwh overview.htm
- https://www.geeksforgeeks.org/
- http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf
 DATA
 MINING BOOK WRITTEN BY Micheline Kamber
- https://www.javatpoint.com/three-tier-data-warehouse-architecture
- M.H. Dunham, "Data Mining: Introductory & Advanced Topics" Pearson Education
- Jiawei Han, Micheline Kamber, "Data Mining Concepts & Techniques" Elsevier
- Sam Anahory, Denniss Murray," data warehousing in the Real World: A Practical Guide for Building Decision Support Systems, "
 Pearson Education
- Mallach," Data Warehousing System", TMH
- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE'97 S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997
- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB'96 D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD'97
- E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computer World, 27, July 1993.
- J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.