

FACULTY OF ENGINEERING & TECHNOLOGY

CSPS-106 Computer Organization

Lecture-12

Mr. Dilip Kumar J Saini

Assistant Professor Computer Science & Engineering

>REAL NUMBERS

FLOATING POINT

EXPRESSIBLE NUMBERS

► IEEE 754 AND FORMAT

>FLOATING POINT MULTIPLICATION /DIVISION

- Numbers with fractions
- Could be done in pure binary
 - $1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Where is the binary point?
- Fixed?
 - Very limited
- Moving?
 - How do you show where it is?

• Exponent indicates place value (point position)

FLOATING POINT EXAMPLES

(a) Format

(b) Examples

SIGNS FOR FLOATING POINT

- Mantissa is stored in 2s compliment
- Exponent is in excess or biased notation
 - e.g. Excess (bias) 128 means
 - 8 bit exponent field
 - Pure value range 0-255
 - Subtract 128 to get correct value
 - Range -128 to +127

NORMALIZATION

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- e.g. 3.123 x 10³)

FP RANGES

- For a 32 bit number
 - 8 bit exponent
 - +/- $2^{256} \approx 1.5 \times 10^{77}$
- Accuracy
 - The effect of changing lsb of mantissa
 - 23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
 - About 6 decimal places

(b) Floating-Point Numbers

IEEE 754 AND FORMAT

- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

(a) Single format

(b) Double format

FP ARITHMETIC +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP ADDITION & SUBTRACTION FLOWCHART

FP ARITHMETIC X/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

FLOATING POINT MULTIPLICATION

FLOATING POINT DIVISION

MUTIPLE CHOICE QUESTIONS:

Sr no	Question	Option A	Option B	OptionC	OptionD
1	The Hamming distance between 100 and 001 is_	1	2	3	4
2	Hamming distance between equal codewords is	0	1	2	3
3	block coding, if k =2 and n =3, we have codewords		2	3	4
4	codes are special linear block codes with one extra property. If a codeword is rotated, the result is another codeword	Non-linear	Convolution	Cyclic	none of the above
5	simple parity-check code can detect errors	even a number of	two	no errors	an odds number of

- http://www.engppt.com/search/label/Computer%20Organization%20and%20Architecture
- http://www.engppt.com/search/label/Computer%20Architecture%20ppt

