

FACULTY OF ENGINEERING & TECHNOLOGY

CSPS-106 Computer Organization

Lecture-05

Mr. Dilip Kumar J Saini

Assistant Professor Computer Science & Engineering

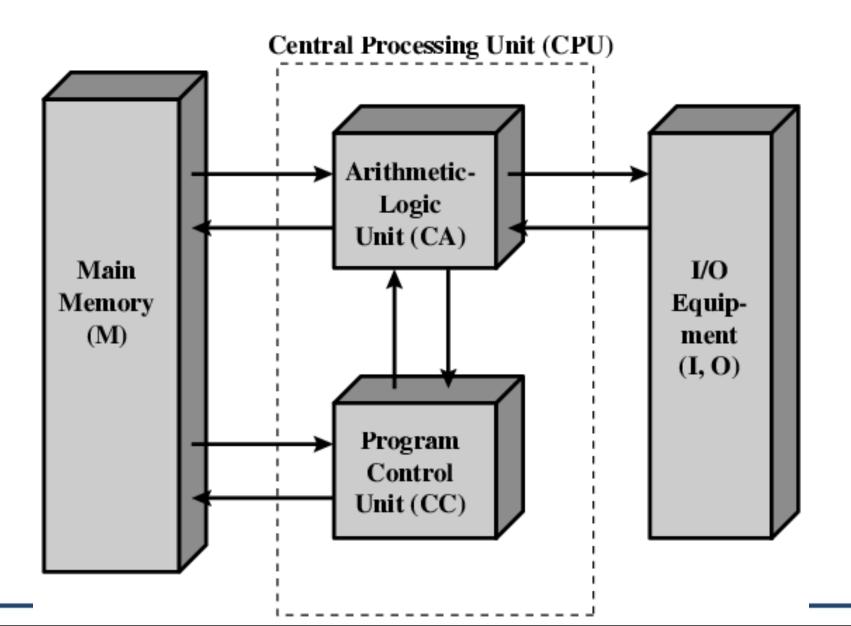
ENIAC – BACKGROUND

>STRUCTURE OF VON NEUMANN MACHINE

STRUCTURE OF IAS

➢ GENERATIONS OF COMPUTER

ENIAC - BACKGROUND


- Electronic Numerical Integrator And Computer
- Eckert and Mauchly
- University of Pennsylvania
- Trajectory tables for weapons
- Started 1943
- Finished 1946
 - Too late for war effort
- Used until 1955

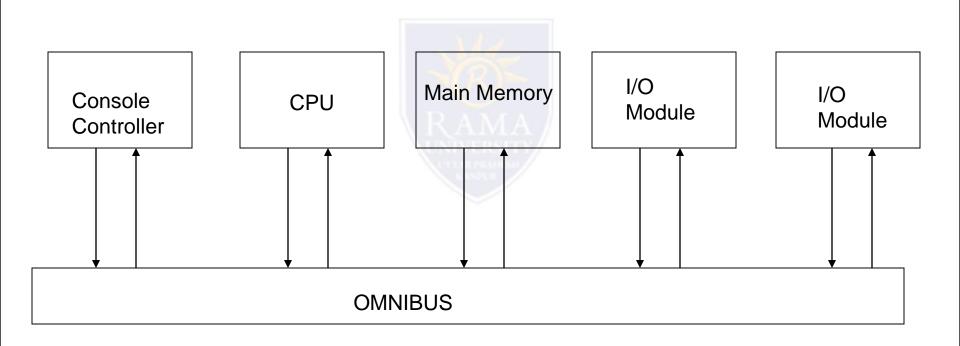
- Decimal (not binary)
- 20 accumulators of 10 digits
- Programmed manually by switches
- 18,000 vacuum tubes
- 30 tons
- 15,000 square feet
- 140 kW power consumption
- 5,000 additions per second

STRUCTURE OF VON NEUMANN MACHINE

IAS - details

- Set of registers (storage in CPU)
 - Memory Buffer Register (MBR)
 - Memory Address Register (MAR)
 - Instruction Register (IR)
 - Instruction Buffer Register (IBR)
 - Program Counter (PC)
 - Accumulator (AC)
 - Multiplier Quotient (MQ)

Arithmetic-logic unit (ALU) AC MQ Input-Figure illustrates Fetch cycle and Arithmetic-logic output circuits Execution cycle, which taken equipment together is the Instruction cycle. MBR Instructions and data IBR PC Main memory MAR IR м Control Control circuits signals Addresses Program control unit (ALU)


COMMERCIAL COMPUTERS

- 1947 Eckert-Mauchly Computer Corporation
- UNIVAC I (Universal Automatic Computer)
- US Bureau of Census 1950 calculations
- Became part of Sperry-Rand Corporation
- Late 1950s UNIVAC II
 - Faster
 - More memory

GENERATIONS OF COMPUTER

- Vacuum tube 1946-1957
- Transistor 1958-1964
- Small scale integration 1965 on
 - Up to 100 devices on a chip
- Medium scale integration to 1971
 - 100-3,000 devices on a chip
- Large scale integration 1971-1977
 - 3,000 100,000 devices on a chip
- Very large scale integration 1978 to date
 - 100,000 100,000,000 devices on a chip

- 8080
 - first general purpose microprocessor
 - 8 bit data path
 - Used in first personal computer Altair
- 8086
 - much more powerful
 - 16 bit
 - instruction cache, prefetch few instructions
 - 8088 (8 bit external bus) used in first IBM PC
- 80286
 - 16 Mbyte memory addressable
 - up from 1Mb
- 80386
 - 32 bit
 - Support for multitasking

- 80486
 - sophisticated powerful cache and instruction pipelining
 - built in maths co-processor
- Pentium
 - Superscalar
 - Multiple instructions executed in parallel
- Pentium Pro
 - Increased superscalar organization
 - Aggressive register renaming
 - branch prediction
 - data flow analysis
 - speculative execution

- 80486
 - sophisticated powerful cache and instruction pipelining
 - built in maths co-processor
- Pentium
 - Superscalar
 - Multiple instructions executed in parallel
- Pentium Pro
 - Increased superscalar organization
 - Aggressive register renaming
 - branch prediction
 - data flow analysis
 - speculative execution

- Pentium II
 - MMX technology
 - graphics, video & audio processing
- Pentium III
 - Additional floating point instructions for 3D graphics
- Pentium 4
 - Note Arabic rather than Roman numerals
 - Further floating point and multimedia enhancements
- Itanium
 - 64 bit
- See Intel web pages for detailed information on processors

MUTIPLE CHOICE QUESTIONS:

Sr no	Question	Option A	Option B	OptionC	OptionD
		Reduce the clock			Be able to detect
		cycles for a	Reduce the size of		even the smallest
1	The ultimate goal of a compiler is to	programming task		Be versatile	of errors
		Complete	Computer		Complex
		Instruction	Integrated	Complex	Instruction
		Sequential	Sequential	Instruction Set	Sequential
2	CISC stands for	Compilation	Compiler	Computer	Compilation
	UNIVE	RSITY	System		
	UTTARP	Standard	Performance		
	KANI	Performance	Evaluation	System Processing	
3	SPEC stands for	Evaluation Code	Corporation	Enhancing Code	none of the above
4	is used to store data in registers.	D flip flop	T flip flop	SR flip flop	DS flight flop
5	In the case of, Zero-address instruction method the operands are stored in	Registers	Accumulators	Push down stack	cache

- http://www.engppt.com/search/label/Computer%20Organization%20and%20Architecture
- http://www.engppt.com/search/label/Computer%20Architecture%20ppt

