

Faculty of Engineering and Technology

Discrete Mathematics
 (CSPS-111)

Somendra Tripathi
Assistant Professor
Computer Science and Engineering

Outlines

- Introduction of Set Theory
- Basic Notations for Sets
- Basic properties of sets
- Definition of Set Equality
- Examples for Sets
- Subsets
- Infinite Sets
- Venn Diagrams

Introduction of Set Theory

Introduction of Set Theory:

\square A set is a structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
\square Set theory deals with operations between, relations among, and statements about sets.
\square Set: Collection of objects (called elements)
$\square a \in A \quad$ "a is an element of A "
"a is a member of A "
$\square A \notin A \quad$ "a is not an element of A "
$\square A=\{a 1, a 2, \ldots, a n\}$ "A contains a1, $\ldots, a n "$
Order of elements is insignificant
\square It does not matter how often the same element is listed (repetition doesn't count).

Basic Notations for Sets

- For sets, we'll use variables S, T, U, \ldots
- We can denote a set S in writing by listing all of its elements in curly braces:
$-\quad\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
- Set builder notation: For any proposition $P(x)$ over any universe of discourse, $\{x \mid P(x)\}$ is the set of all x such that $P(x)$.
e.g., $\{x \mid x$ is an integer where $x>0$ and $x<5\}$

Basic properties of sets

- Sets are inherently unordered:
- No matter what objects a, b, and c denote,

$$
\begin{aligned}
\{a, b, c\} & =\{a, c, b\}=\{b, a, c\}= \\
\{b, c, a\} & =\{c, a, b\}=\{c, b, a\} .
\end{aligned}
$$

- All elements are distinct (unequal);
multiple listings make no difference!
$-\quad\{a, b, c\}=\{a, a, b, a, b, c, c, c, c\}$.
- This set contains at most 3 elements!

Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set $\{1,2,3,4\}=$

$$
\begin{aligned}
& \{x \mid x \text { is an integer where } x>0 \text { and } x<5\}= \\
& \{x \mid x \text { is a positive integer whose square } \\
& \quad \text { is }>0 \text { and }<25\}
\end{aligned}
$$

-Sets A and B are equal if and only if they contain exactly the same elements.
-Examples:

$$
\text { - } A=\{9,2,7,-3\}, B=\{7,9,-3,2\}: \quad A=B
$$

$$
\text { - } A=\{d o g, \text { cat, 'horse }\}
$$

$$
B=\{c a t, \text { horse, squirrel, clog }\}: \quad A \neq B
$$

- $A=\{d o g$, cat, 'horse $\}$, $B=\{$ cat, horse, clog, clog $\}$: $\quad A=B$

Examples for Sets

- "Standard" Sets:
- Natural numbers $\mathbf{N}=\{0,1,2,3, \ldots\}$
- Integers

$$
Z=\{\ldots,-2,-1,0,1,2, \ldots\}
$$

- Positive Integers

$$
\mathbf{Z}^{+}=\{1,2,3,4, \ldots\}
$$

- Real Numbers

$$
\mathbf{R}=\{47.3,-12, \pi, \ldots\}
$$

- Rational Numbers

$$
\mathbf{Q}=\{1.5,2.6,-3.8,15, \ldots\}
$$

- (correct definitions will follow)
- $\mathrm{A}=\varnothing \quad$ "empty set/null set"
- $A=\{z\}$
- $A=\{\{b, c\},\{c, x, d\}\}$

$$
\begin{gathered}
\text { Note: } z \in A, \text { but } z \neq\{z\} \\
\text { set of sets }
\end{gathered}
$$

- $A=\{\{x, y\}\} \quad$ Note: $\{x, y\} \in A$, but $\{x, y\} \neq\{\{x, y\}\}$
- $A=\{x \mid P(x)\}$ "set of all x such that $P(x)$ "
- $\quad P(x)$ is the membership function of $\operatorname{set} A$
- $\quad \forall x(P(x) \rightarrow x \in A)$
- $A=\{x \mid x \in \mathbf{N} \wedge x>7\}=\{8,9,10, \ldots\}$ "set builder notation"

Subsets

$\cdot A \subseteq B \quad$ "A is a subset of B "
$\cdot A \subseteq B$ if and only if every element of A is also an element of B.
-We can completely formalize this:

- $A \subseteq B \Leftrightarrow \forall x(x \in A \rightarrow x \in B)$
-Examples:

$$
A=\{3,9\}, B=\{5,9,1,3\}, \quad A \subseteq B ?
$$

$A \equiv\{3,3,3,9\}, B \equiv\{5,9,1,3\}, \quad A \subseteq B ?$
$A \equiv\{1,2,3\}, B=\{2,3,4\}, \quad A \subseteq B ?$
true
true
false

Subsets

- Useful rules:
- $A=B \Leftrightarrow(A \subseteq B) \wedge(B \subseteq A)$
- $(A \subseteq B) \wedge(B \subseteq C) \Rightarrow A \subseteq C$ (see Venn Diagram)

Subsets

- Useful rules:
- $\varnothing \subseteq A$ for any set A
(but $\varnothing \in A$ may not hold for any set A)
- $A \subseteq A$ for any set A
- Proper subsets:
- $A \subset B \quad$ "A is a proper subset of B "
- $A \subset B \Leftrightarrow \forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)$
or
- $A \subset B \Leftrightarrow \forall x(x \in A \rightarrow x \in B) \wedge \neg \forall x(x \in B \rightarrow x \in A)$

Infinite Sets

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets:
$\mathbf{N}=\{0,1,2, \ldots\} \quad$ The natural numbers.
$\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ The integers.
$\mathbf{R}=$ The "real" numbers, such as 374.1828471929498181917281943125...
- Infinite sets come in different sizes!

Venn Diagrams

