

Faculty of Engineering and Technology

Discrete Mathematics
 (CSPS-111)

Somendra Tripathi
Assistant Professor
Computer Science and Engineering

Outlines

- Basic Set Relations
- The Empty Set
- Sets Are Objects
- Cardinality of Sets
- The Power Set
- Cartesian Products of Sets
- Set Operations

Basic Set Relations

- $\quad X \in S$ (" x is in S ") is the proposition that object x is an element or member of set S.
- e.g. $3 \in \mathbf{N}, " a$ " $\in\{x \mid x$ is a letter of the alphabet $\}$
- Can define set equality in terms of \in relation:
$\forall S, T: S=T \leftrightarrow(\forall x: x \in S \leftrightarrow x \in T)$
"Two sets are equal iff they have all the same members."
- $\quad X \notin S: \equiv \neg(x \in S) \quad$ " x is not in $S "$

The Empty Set

- $\quad \varnothing$ ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\varnothing=\{ \}=\{x /$ False $\}$
- No matter the domain of discourse, we have the axiom
$\neg \exists x: x \in \varnothing$.

Subset and Superset Relations

- $\quad S \subseteq T$ (" S is a subset of T ") means that every element of S is also an element of T.
- $\mathrm{S} \subseteq \mathrm{T} \Leftrightarrow \forall x(x \in S \rightarrow x \in T)$
- $\varnothing \subseteq S, S \subseteq S$.
- $\quad \mathrm{S} \supseteq \mathrm{T}$ (" S is a superset of T ") means $\mathrm{T} \subseteq \mathrm{S}$.
- Note $\mathrm{S}=\mathrm{T} \Leftrightarrow \mathrm{S} \subseteq \mathrm{T} \wedge \mathrm{S} \supseteq \mathrm{T}$.
- means $\neg(S \subseteq T)$, i.e. $\exists x(x \in S \wedge x \notin T)$

Sets Are Objects

- The objects that are elements of a set may themselves be sets.
- E.g. let $S=\{x \mid x \subseteq\{1,2,3\}\}$
then $S=\{\varnothing$,
$\{1\},\{2\},\{3\}$,
$\{1,2\},\{1,3\},\{2,3\}$, $\{1,2,3\}\}$
- Note that $1 \neq\{1\} \neq\{\{1\}\}$!!!!

Cardinality of Sets

- $\quad|S|$ (read "the cardinality of $S^{\prime \prime}$) is a measure of how many different elements S has.
- E.g., $|\varnothing|=0, \quad|\{1,2,3\}|=3, \quad|\{a, b\}|=2$, $|\{\{1,2,3\},\{4,5\}\}|=2$
- We say S is infinite if it is not finite.
- What are some infinite sets we've seen?
- If a set S contains n distinct elements, $n \in N$, we call S a finite set with cardinality n.

Examples:

- $A=\{$ Mercedes, BMW, Porsche $\}, \quad|A|=3$
- $\quad B=\{1,\{2,3\},\{4,5\}, 6\}$
$|B|=4$
- $\quad \mathrm{C}=\square$
$|C|=0$
- $E=\{x \in N \mid x \geq 7000\}$
E is infinite!

The Power Set

- The power set $\mathrm{P}(S)$ of a set S is the set of all subsets of S. $\mathrm{P}(S)=\{x \mid x \subseteq S\}$.
- E.g. $P(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\}$.
- Sometimes $\mathrm{P}(S)$ is written $\mathbf{2}^{S}$.

Note that for finite $S, \quad|\mathrm{P}(S)|=2^{|S|}$.

- It turns out that $|\mathrm{P}(\mathbf{N})|>|\mathbf{N}|$.

There are different sizes of infinite sets!

- $P(A) \quad$ "power set of A " (also written as 2^{A})
- $P(A)=\{B \mid B \subseteq A\} \quad$ (contains all subsets of A)

Examples:

- $A=\{x, y, z\}$
- $P(A)=\{\varnothing,\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}\}$
- $A=\varnothing$
- $P(A)=\{\varnothing\}$

$$
\text { Note: }|A|=0,|P(A)|=1
$$

The Power Set

- Cardinality of power sets: $|P(A)|=2^{|A|}$
- Imagine each element in A has an "on/off" switch
- Each possible switch configuration in A corresponds to one subset of A, thus one element in $P(A)$

A	1	2	3	4	5	6	7	8
x								
y								
z								

- For 3 elements in A, there are $2 \times 2 \times 2=8$ elements in $P(A)$

Cartesian Products of Sets

- For sets A, B, their Cartesian product

$$
A \times B: \equiv\{(a, b) \mid a \in A \wedge b \in B\}
$$

- E.g. $\{\mathrm{a}, \mathrm{b}\} \times\{1,2\}=\{(\mathrm{a}, 1),(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{b}, 2)\}$
- Note that for finite $A, B, \quad|A \times B|=|A||B|$.
- Note that the Cartesian product is not commutative: $\neg \forall A B$: $A \times B=B \times A$.
- Extends to $A_{1} \times A_{2} \times \ldots \times A_{n} \ldots$
-The ordered n-tuple $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$ is an ordered collection of n objects.
-Two ordered n-tuples $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$ and
$\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)$ are equal if and only if they contain exactly the same elements in the same order, i.e.
$a_{i}=b_{i}$ for $1 \leq i \leq n$.
-The Cartesian product of two sets is defined as:
- $A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$

Cartesian Product
-Example:

- $A=\{$ good, bad $\}, B=\{$ student, prof $\}$

(good, student), (good, prof), (bad, student), (bad, prof)) \}
$B \times A=\{\quad($ student, good),$\quad($ prof, good) $) \quad$ (student, bad) $)$, (prof, bad) $)\}$

Example: $\mathrm{A}=\{\mathrm{x}, \mathrm{y}\}, \mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

$$
A \times B=\{(x, a),(x, b),(x, c),(y, a),(y, b),(y, c)\}
$$

Note that:

- $A \times \varnothing=\varnothing$
- $\varnothing \times A=\varnothing$
- For non-empty sets A and $B: A \neq B \Leftrightarrow A \times B \neq B \times A$
- $|A \times B|=|A| \cdot|B|$
-The Cartesian product of two or more sets is defined as:
$\cdot A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}\right.$ for $\left.1 \leq i \leq n\right\}$

Set Operations

- Union: $A \cup B=\{x \mid x \in A \vee x \in B\}$

Example: $A=\{a, b\}, B=\{b, c, d\}$

- $A \cup B=\{a, b, c, d\}$
- Intersection: $\mathrm{A} \cap \mathrm{B}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{A} \wedge \mathrm{x} \in \mathrm{B}\}$

Example: $A=\{a, b\}, B=\{b, c, d\}$

- $\quad A \cap B=\{b\}$
- Cardinality: $|A \cup B|=|A|+|B|-|A \cap B|$
-Two sets are called disjoint if their intersection is empty, that is, they share no elements:
- $\mathrm{A} \cap \mathrm{B}=\varnothing$
-The difference between two sets A and B contains exactly those elements of A that are not in B :
- $A-B=\{x \mid x \in A \wedge x \notin B\}$

Example: $A=\{a, b\}, B=\{b, c, d\}, A-B=\{a\}$
-Cardinality: $|\mathrm{A}-\mathrm{B}|=|\mathrm{A}|-|\mathrm{A} \cap \mathrm{B}|$

