

Faculty of Engineering and Technology

Discrete Mathematics
 (CSPS-111)

Somendra Tripathi
Assistant Professor
Computer Science and Engineering

Outlines

- Set Operations
- The Union Operator
- The Intersection Operator
- Set Difference
- Set Complements

Set Operations

- The complement of a set A contains exactly those elements under consideration that are not in A: denoted A^{c} (or \triangle as in the text)
- $\quad A^{c}=U-A$
- Example: $U=N, B=\{250,251,252, \ldots\}$

$$
B^{c}=\{0,1,2, \ldots, 248,249\}
$$

The Union Operator

- For sets A, B, their union $A \cup B$ is the set containing all elements that are either in A, or (" \vee ") in B (or, of course, in both).
- Formally, $\forall A, B: A \cup B=\{x \mid x \in A \vee x \in B\}$.
- Note that $A \cup B$ contains all the elements of A and it contains all the elements of B :

$$
\forall A, B:(A \cup B \supseteq A) \wedge(A \cup B \supseteq B)
$$

Union Examples:

- $\quad\{a, b, c\} \cup\{2,3\}=\{a, b, c, 2,3\}$
- $\quad\{2,3,5\} \cup\{3,5,7\}=\{2,3,5,3,5,7\}=\{2,3,5,7\}$

The Intersection Operator

- For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and (" \wedge ") in B.
- Formally, $\forall A, B$: $A \cap B \equiv\{x \mid x \in A \wedge x \in B\}$.
- Note that $A \cap B$ is a subset of A and it is a subset of B :
$\forall A, B:(A \cap B \subseteq A) \wedge(A \cap B \subseteq B)$

Intersection Examples:

- $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \cap\{2,3\}=$ \qquad \varnothing
- $\{2,4,6\} \cap\{3,4,5\}=$

$$
_\{4\}
$$

Set Difference

- For sets A, B, the difference of A and B, written $A-B$, is the set of all elements that are in A but not B.
- $A-B: \equiv\{x \mid x \in A \wedge x \notin B\}$

$$
=\{x \mid \neg(x \in A \rightarrow x \in B)\}
$$

- Also called:

The complement of B with respect to A.
Set Difference Examples

- $\{1,2,3,4,5,6\}-\{2,3,5,7,9,11\}=$
\qquad
- $\mathbf{Z}-\mathbf{N}=\{\ldots,-1,0,1,2, \ldots\}-\{0,1, \ldots\}$

$$
\begin{aligned}
& =\{x \mid x \text { is an integer but not a nat. \# }\} \\
& =\{x \mid x \text { is a negative integer }\} \\
& =\{\ldots,-3,-2,-1\}
\end{aligned}
$$

Set Complements

The Power Set

- The universe of discourse can itself be considered a set, call it U.
- The complement of A, written , is the complement of A w.r.t. U, i.e., it is $U-A$.
- E.g., If $U=\mathbf{N}$,

$$
[\{3]=\{0124,67, \ldots
$$

