
FACULTY OF ENGINEERING & TECHNOLOGY

Brajesh Mishra
Assistant Professor

Department of Computer Science & Engineering 



Topics Covered 

Data types
CLASSES OF DATATYPES



Data types

• A data type represents a type of the data which you can process using your computer program

• Below are some more examples and specifics for the various data types.

– Numbers

– Booleans (true or false)

– Characters ('a', 'b', ... 'z', '1', '2', ... '9', '!', ' '̂, etc)

– Arrays (a lists of data (of the SAME TYPE!))

– Structures are a way to create more complex "Data Types" than the basics.



CLASSES OF DATATYPES

•Primitive data types
– Primitive data types are typically types that are built-in or basic to a language implementation

•Machine data types
– All data in computers based on digital electronics is represented as bits (alternatives 0 and 1) on the lowest level

•Boolean type
– The Boolean type represents the values true and false

•Numeric types
– The integer data types, or "non-fractional numbers"

– Floating point data types, usually represent values as high-precision fractional values

– Fixed point data types are convenient for representing monetary values

– Bignum or arbitrary precision numeric types lack predefined limits



CLASSES OF DATATYPES

• Composite types

– Composite types are derived from more than one primitive type.

– An array (also called vector, list, or sequence) stores a number of elements and provide random access to 

individual elements.

– Record (also called tuple or struct) Records are among the simplest data structures

– Union. A union type definition will specify which of a number of permitted primitive types may be stored in its 

instances,

– A set is an abstract data structure that can store certain values, without any particular order, and no repeated 

values

– An object contains a number of data fields, like a record, and also a number of subroutines for accessing or 

modifying them, called methods.

• Enumerations

– The enumerated type has distinct values, which can be compared and assigned, but which do not necessarily 

have any particular concrete representation in the computer's memory; compilers and interpreters can represent 

them arbitrarily.


