
FACULTY OF ENGINEERING & TECHNOLOGY

Brajesh Mishra
Assistant Professor

Department of Computer Science & Engineering 



Topics Covered 

Stack-Based Storage Allocation
Heap-Based Storage Allocation
Sequence Control



Stack-Based Storage Allocation

• Stack-based storage allocation is appropriate when the storage requirements are not known at compile time, but the requests 

obey a last-in, first-out discipline. 

• Examples:

• local variables in a procedure in C/C++, Ada, Algol, or Pascal

• procedure call information (return address etc).

import java.awt.Point; 

class Squid 

{ public static void main(String[] args) 

{ int n = 1; 

Point p = new Point(10,20); 

Point q; 

q = test(n,p); } 

public Point test(int i, Point r) 

{ Point s;

s = new Point(r.x+i, r.y+i); 

return s; } }



Heap-Based Storage Allocation

• The most flexible allocation scheme is heap-based allocation.

• Allocation is easy. 

• In C, malloc (a standard library function) allocates fresh storage. 

• In Lisp/Scheme, a new cons cell is allocated when the cons function is called, array storage can be allocated using make-

array, and so forth. 

• In Java new storage is allocated when the program makes a new instance of a class.

• Deallocation is harder. 

• There are two approaches: 

– programmer-controlled 

– automatic.



Sequence Control

• The control of execution of the operations, both primitive and user defined, is termed as sequence control

• Sequence control structures are categorized into following four groups:

• Expressions:
– These form the basic building blocks for statements and express how at are manipulated and changed by a 

program.

– Properties such as precedence rules and parentheses determine how expressions become evaluated.

• Statement:
– Statements such as conditional or iterative statements, determine how control flows from one segment of a 

program to another.

• Declarative programming:
– It is an execution model that does not depend on statements, but nevertheless causes execution to proceed 

through a program.

• Subprograms:
– Subprograms such as subprogram calls and coroutines, form a way to transfer control from one segment of a 

program to another.


