

FACULTY OF EGINEERING

Digital Image Processing LECTURE-19

Mr. Dhirendra

Assistant Professor Computer Science & Engineering

OUTLINE

- Logic Operations
- *Basics of Spatial Filtering
- Spatial Filtering for Smoothing
- Smoothing Filters
- *****Smoothing Spatial Filters
- *****Spatial Filtering for Smoothing (Example)
- *MCQ
- *References

Given the 3×3 mask with coefficients: w₁, w₂,..., w₉
The mask covers the pixels with gray levels: z₁, z₂,..., z₉

z gives the output intensity value for the processed image (to be stored in a new array) at the location of z5 in the input image

Mask operation near the image border

Problem arises when part of the mask is located outside the

image plane; to handle the problem:

- 1. Discard the problem pixels (e.g. 512x512input 510x510output, if mask size is 3x3)
- 2. Zero padding: expand the input image by padding zeros

(512x512input 514x514output)

- Zero padding is not good; creates artificial lines or edges on the

border

3. We normally use the gray levels of border pixels to fill up the expanded region (for 3x3 mask). For larger

masks a border region equal to half of the mask size is mirrored on the expanded region.

	102	102	130	143	123	115		
	102	102	130	143	123	115	· • ·	
	93	93			•••			
	98	98						
	82	82						
	65	65						
xpanded area Original image si (shaded area)								size

Spatial Filtering for Smoothing

For blurring/noise reduction;

- Blurring is usually used in preprocessing steps,
- e.g., to remove small details from an image prior to object extraction, or to bridge small

gaps in lines or curves

Equivalent to Low-pass spatial filtering in frequency domain because smaller (high

frequency) details are removed based on

neighborhood averaging (averaging filters)

Implementation: The simplest form of the spatial

filter for averaging is a square

mask (assume m×m mask) with

the same coefficients 1/m2 to

preserve the gray levels

(averaging).

Applications: Reduce noise; smooth false contours

Side effect: Edge blurring

Consider the output pixel is positioned at the center

Smoothing Spatial Filters

•One of the simplest spatial filtering operations we can perform is a smoothing operation

- •Simply average all of the pixels in a neighbourhood around a central value
- •Especially useful in removing noise from images
- •Also useful for highlighting gross detail

Spatial Filtering for Smoothing (Example)

abc

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

- 1. Which of the following is the primary objective of sharpening of an image?
 - a) Blurring the image
 - b) Highlight fine details in the image
 - c) Increase the brightness of the image
 - d) Decrease the brightness of the image
- 2. Image sharpening process is used in electronic printing.
 - a) True
 - b) False
- 3. In spatial domain, which of the following operation is done on the pixels in sharpening the image?
 - a) Integration
 - b) Average
 - c) Median
 - d) Differentiation

- 4. Image differentiation enhances the edges, discontinuities and deemphasizes the pixels with slow varying gray levels.
 - a) True
 - b) False
- 5. In which of the following cases, we wouldn't worry about the behaviour of sharpening filter?
 - a) Flat segments
 - b) Step discontinuities
 - c) Ramp discontinuities
 - d) Slow varying gray values

https://www.javatpoint.com/digital-image-processing-tutorial

https://www.geeksforgeeks.org/

Digital Image Processing 2nd Edition, Rafael C. Gonzalvez and Richard E. Woods. Published by: Pearson

Education.

- Digital Image Processing and Computer Vision, R.J. Schalkoff. Published by: JohnWiley and Sons, NY.
- Fundamentals of Digital Image Processing, A.K. Jain. Published by Prentice Hall, Upper Saddle River, NJ.

