

FACULTY OF EGINEERING

Digital Image Processing LECTURE-21

Mr. Dhirendra

Assistant Professor Computer Science & Engineering

OUTLINE

- *Spatial Filtering for Image Sharpening
- * Derivatives
- First and Second Order Derivatives
- *****Example for Discrete Derivatives
- Comparison between f" and f'
- Laplacian for Image Enhancement
- *MCQ
- *References

•Background: to highlight fine detail in an image or to

enhance blurred detail

•Applications: electronic printing, medical imaging, industrial

inspection, autonomous target detection (smart

weapons).....

•Foundation (Blurring vs Sharpening):

•Blurring/smoothing is performed by spatial averaging

(equivalent to integration)

•Sharpening is performed by noting only the gray level

changes in the image that is the differentiation

Spatial Filtering for Image Sharpening

Operation of Image Differentiation

- Enhance edges and discontinuities (magnitude of output gray level >>0)
- De-emphasize areas with slowly varying gray-level
- values (output gray level: 0)

Mathematical Basis of Filtering for Image Sharpening

- First-order and second-order derivatives
- Gradients
- Implementation by mask filtering

Derivatives

First Order Derivative

•A basic definition of the first-order derivative of a onedimensional function f(x) is the difference

Second Order Derivative

 Similarly, we define the second-order derivative of a onedimensional function f(x) is the difference

 $\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

$$f(x) \quad f(x+1)$$
Position for the output pixel
$$\frac{\partial^2 f}{\partial x^2} = f'(x+1) - f'(x)$$

$$= [f(x+2) - f(x+1)] - [f(x+1) - f(x)]$$

$$= f(x+2) - 2f(x+1) + f(x)$$

$$f(x) \quad f(x+1) \quad f(x+2)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

$$f(x-1) \quad f(x) \quad f(x+1)$$

Example for Discrete Derivatives\

Comparison between f" and f'

- •f' generally produces thicker edges in an image
- •f" has a stronger response to fine detail
- •f' generally has a stronger response to a gray-level step
- •f" produces a double response at step changes in gray level
- •For image enhancement, f" is generally better suited
- than f'
- •Major application of f' is for edge extraction; f' used A together with f" results in impressive enhancement effect

Laplacian for Image Enhancement

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

a b c d

FIGURE 3.39 (a) Filter mask used to implement the digital Laplacian, as defined in Eq. (3.7-4). (b) Mask used to implement an extension of this equation that includes the diagonal neighbors. (c) and (d) Two other implementations of the Laplacian.

- 1. What is the thickness of the edges produced by first order derivatives when compared to that of second order derivatives?
 - a) Finer
 - b) Equal
 - c) Thicker
 - d) Independent

- a) True
- b) False

- a) First order derivative
- b) Third order derivative
- c) Second order derivative
- d) First and second order derivatives

- 4. Which of the following is the primary objective of sharpening of an image?
 - a) Blurring the image
 - b) Highlight fine details in the image
 - c) Increase the brightness of the image
 - d) Decrease the brightness of the image
- 5. Image sharpening process is used in electronic printing.

a) True

b) False

https://www.javatpoint.com/digital-image-processing-tutorial

https://www.geeksforgeeks.org/

Digital Image Processing 2nd Edition, Rafael C. Gonzalvez and Richard E. Woods. Published by: Pearson

Education.

- Digital Image Processing and Computer Vision, R.J. Schalkoff. Published by: JohnWiley and Sons, NY.
- Fundamentals of Digital Image Processing, A.K. Jain. Published by Prentice Hall, Upper Saddle River, NJ.

