
FACULTY OF EGINEERING AND TECHNOLOGY

LECTURE -09

Umesh Kumar Gera
Assistant Professor

Computer Science & Engineering

Soft Computing

OUTLINE

Concept of Hopfield Network

Hopfield Network updating rule

Hopfield Network as a Dynamical system

Energy function evaluation

Multiple Choice Question

References

INTRODUCTION KOHONEN SELF ORGANIZING MAPS

Background of Kohonen Self-Organizing Maps

 Pioneered in 1982 by Finnish professor and researcher Dr. Teuvo Kohonen, a self-organising map is an unsupervised

learning model, intended for applications in which maintaining a topology between input and output spaces is of

importance.

 The notable characteristic of this algorithm is that the input vectors that are close — similar — in high dimensional

space are also mapped to nearby nodes in the 2D space.

 It is in essence a method for dimensionality reduction, as it maps high-dimension inputs to a low (typically two)

dimensional discretised representation and conserves the underlying structure of its input space.

A valuable detail is that the entire learning occurs without supervision i.e. the nodes are self-organising.

 They are also called feature maps, as they are essentially retraining the features of the input data, and simply

grouping themselves according to the similarity between one another.

 This has a pragmatic value for visualizing complex or large quantities of high dimensional data and representing the

relationship between them into a low, typically two-dimensional, field to see if the given unlabelled data has any structure

to it.

STRUCTURE OF KOHONEN SELF ORGANIZING MAPS

Structure of Kohonen Self-Organizing Maps

 A Self-Organizing Map (SOM) differs from typical ANNs both in its architecture and algorithmic properties.

 Firstly, its structure comprises of a single-layer linear 2D grid of neurons, instead of a series of layers.

 All the nodes on this grid are connected directly to the input vector, but not to one another, meaning the nodes do not

know the values of their neighbors, and only update the weight of their connections as a function of the given inputs.

 The grid itself is the map that organizes itself at each iteration as a function of the input of the input data. As such, after

clustering, each node has its own (i, j) coordinate, which allows one to calculate the Euclidean distance between 2 nodes

by means of the Pythagorean theorem.

Kohonen network’s nodes can be in a rectangular (left) or hexagonal (right) topology.

Property of Kohonen Self-Organizing Maps

 A Self-Organising Map, additionally, uses competitive learning as opposed to error-correction learning, to adjust it weights.

 This means that only a single node is activated at each iteration in which the features of an instance of the input vector are

presented to the neural network, as all nodes compete for the right to respond to the input.

 The chosen node — the Best Matching Unit (BMU) — is selected according to the similarity, between the current input

values and all the nodes in the grid.

 The node with the smallest Euclidean difference between the input vector and all nodes is chosen, along with its

neighboring nodes within a certain radius, to have their position slightly adjusted to match the input vector.

 By going through all the nodes present on the grid, the entire grid eventually matches the complete input dataset, with

similar nodes grouped together towards one area, and dissimilar ones separated.

PROPERTY OF KOHONEN SELF ORGANIZING MAPS

A Kohonen model with the BMU in yellow, the

layers inside the neighborhood radius in pink

and purple, and the nodes outside in blue.

Kohonen Self-Organizing Maps variables

 t is the current iteration

 n is the iteration limit, i.e. the total number of iterations the network can undergo

 λ is the time constant, used to decay the radius and learning rate

 i is the row coordinate of the nodes grid

 j is the column coordinate of the nodes grid

 d is the distance between a node and the BMU

 w is the weight vector

 w_ij(t) is the weight of the connection between the nodes i,j in the grid, and the input vector’s instance at the

iteration t

 x is the input vector

 x(t) is the input vector’s instance at iteration t

 α(t) is the learning rate, decreasing with time in the interval [0,1], to ensure the network converges.

 β_ij(t) is the neighborhood function, monotonically decreasing and representing a node i, j’s distance from the

BMU, and the influence it has on the learning at step t.

 σ(t) is the radius of the neighborhood function, which determines how far neighbor nodes are examined in the

2D grid when updating vectors. It is gradually reduced over time.

VARIABLES OF KOHONEN SELF ORGANIZING MAPS

Kohonen Self-Organizing Maps Algorithm steps

1. Initialize each node’s weight w_ij to a random value

2. Select a random input vector x_k

3. Repeat point 4. and 5. for all nodes in the map:

4. Compute Euclidean distance between the input vector x(t) and the weight vector w_ij associated with the first

node, where t, i, j = 0.

5. Track the node that produces the smallest distance t.

6. Find the overall Best Matching Unit (BMU), i.e. the node with the smallest distance from all calculated ones.

7. Determine topological neighborhood β_ij(t) its radius σ(t) of BMU in the Kohonen Map

8. Repeat for all nodes in the BMU neighborhood: Update the weight vector w_ij of the first node in the

neighborhood of the BMU by adding a fraction of the difference between the input vector x(t) and the

weight w(t) of the neuron.

9. Repeat this whole iteration until reaching the chosen iteration limit t=n

Step 1 is the initialization phase, while step 2–9 represent the training phase.

ALGORITHM OF KOHONEN SELF ORGANIZING MAPS

WORKING OF HOPFIELD NETWORK

Formula used in Kohonen Self-Organizing Maps

The updates and changes to the variables are done according to the following formulas:

The weights within the neighborhood are updated as:

The first equation tells us that the new updated weight w_ij (t + 1) for the node i, j is

equal to the sum of old weight w_ij(t) and a fraction of the difference between the old

weight and the input vector x(t). In other words, the weight vector is ‘moved’ closer

towards the input vector. Another important element to note is that the updated weight

will be proportional to the 2D distance between the nodes in the neighborhood radius

and the BMU.

Furthermore, the same equation 3.1 does not account for the influence of the learning

being proportional to the distance a node is from the BMU. The updated weight should

take into factor that the effect of the learning is close to none at the extremities of the

neighborhood, as the amount of learning should decrease with distance. Therefore, the

second equation adds the extra neighborhood function factor of βij(t), and is the more

precise in-depth one.

WORKING OF HOPFIELD NETWORK

The radius and learning rate are both similarly and exponentially decayed with time.

The neighborhood function’s influence β_i(t) is calculated by:

The Euclidean distance between each node’s weight vector and the current input instance is calculated by the

Pythagorean formula.

WORKING OF HOPFIELD NETWORK

The BMU is selected from all the node’s calculated distances as the one with the smallest.

WORKING OF HOPFIELD NETWORK

Energy function evaluation:

Hopfield networks have an energy function that diminishes

or is unchanged with asynchronous updating.

For a given state X ∈ {−1, 1} N of the network and for any

set of association weights Wij with Wij = wji and wii =0

let,

Here, we need to update Xm to X'm and denote the

new energy by E' and show that.

E'-E = (Xm-X'm) ∑i≠mWmiXi.

Using the above equation, if Xm = Xm' then we have

E' = E

If Xm = -1 and Xm' = 1 , then Xm - Xm' = 2 and hm=

∑iWmiXi ? 0

Thus, E' - E ≤ 0

Similarly if Xm =1 and Xm'= -1 then Xm - Xm' = 2 and

hm= ∑iWmiXi < 0

Thus, E - E' < 0.

Training the network: One pattern (Ki=0)

Suppose the vector x→ = (x1,…,xi,…,xN) ∈ {-1,1}N is a pattern

that we like to store in the Hopfield network.

To build a Hopfield network that recognizes x→, we need to

select connection weight Wij accordingly.

If we select Wij =ɳ XiXj for 1 ≤ i , j ≤ N (Here, i≠j), where ɳ >

0 is the learning rate, then the value of Xi will not change

under updating condition as we illustrate below.

We have

It implies that the value of Xi, whether 1 or -1 will not

change, so that x→ is a fixed point.

Note that - x→ also becomes a fixed point when we train the

network with x→ validating that Hopfield networks are sign

blind

MULTIPLE CHOICE QUESTION

6. Which of the following is true for neural networks?

(i) The training time depends on the size of the network.

(ii) Neural networks can be simulated on a conventional

computer.

(iii) Artificial neurons are identical in operation to

biological ones.

a) All of the mentioned

b) (ii) is true

c) (i) and (ii) are true

d) None of the mentioned

7. What are the advantages of neural networks over

conventional computers?

(i) They have the ability to learn by example

(ii) They are more fault tolerant

(iii)They are more suited for real time operation due to

their high ‘computational’ rates

a) (i) and (ii) are true

b) (i) and (iii) are true

c) Only (i)

d) All of the mentioned

8. Which of the following is true?

Single layer associative neural networks do not have the ability to:

(i) perform pattern recognition

(ii) find the parity of a picture

(iii)determine whether two or more shapes in a picture are

connected or not

a) (ii) and (iii) are true

b) (ii) is true

c) All of the mentioned

d) None of the mentioned

9. Which is true for neural networks?

a) It has set of nodes and connections

b) Each node computes it’s weighted input

c) Node could be in excited state or non-excited state

d) All of the mentioned

10. What is Neuro software?

a) A software used to analyze neurons

b) It is powerful and easy neural network

c) Designed to aid experts in real world

d) It is software used by Neurosurgeon

REFERENCES

 https://www.sanfoundry.com/neural-networks-questions-answers-backpropagation-algorithm/

https://www.javatpoint.com/artificial-neural-network-hopfield-network

https://www.sanfoundry.com/neural-networks-questions-answers-backpropagation-algorithm/
https://www.javatpoint.com/artificial-neural-network-hopfield-network

