

FACULTY OF ENGINEERING & TECHNOLOGY

BCS -504 Computer Graphics & Multimedia

Lecture-08

Mr. Dilip Kumar J Saini

Assistant Professor Computer Science & Engineering

SCAN CONVERSION DEFINITION

>ADVANTAGE OF DEVELOPING ALGORITHMS FOR SCAN CONVERSION

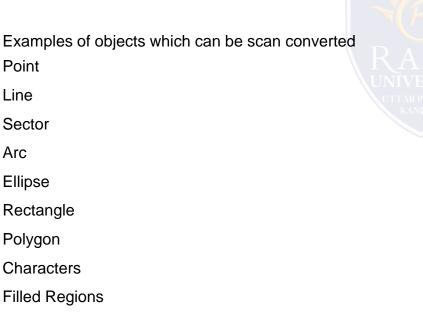
SCAN CONVERTING A POINT

SCAN CONVERTING A STRAIGHT LINE

>DDA ALGORITHM

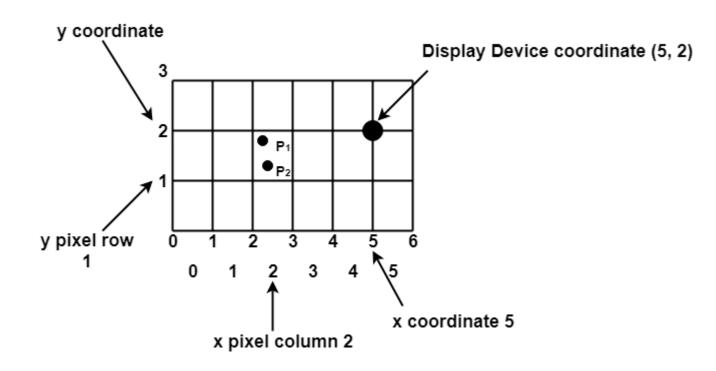
BRESENHAM'S LINE ALGORITHM

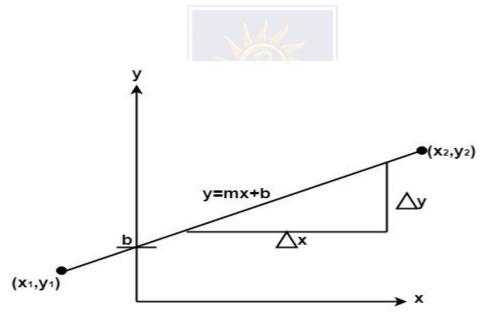
It is a process of representing graphics objects a collection of pixels. The graphics objects are continuous. The pixels used are discrete. Each pixel can have either on or off state.


The circuitry of the video display device of the computer is capable of converting binary values (0, 1) into a pixel on and pixel off information. 0 is represented by pixel off. 1 is represented using pixel on. Using this ability graphics computer represent picture having discrete dots.

Any model of graphics can be reproduced with a dense matrix of dots or points. Most human beings think graphics objects as points, lines, circles, ellipses. For generating graphical object, many algorithms have been developed.

Advantage of developing algorithms for scan conversion


- 1. Algorithms can generate graphics objects at a faster rate.
- 2. Using algorithms memory can be used efficiently.
- 3. Algorithms can develop a higher level of graphical objects.


Scan Converting a Point

Each pixel on the graphics display does not represent a mathematical point. Instead, it means a region which theoretically can contain an infinite number of points. Scan-Converting a point involves illuminating the pixel that contains the point. **Example:** Display coordinates points as shown in fig would both be represented by pixel (2, 1). In general, a point p (x, y) is represented by the integer part of x & the integer part of y that is pixels [(INT (x), INT (y).

A straight line may be defined by two endpoints & an equation. In fig the two endpoints are described by (x_1,y_1) and (x_2,y_2) . The equation of the line is used to determine the x, y coordinates of all the points that lie between these two endpoints.

Using the equation of a straight line, y = mx + b where m = & b = the y interrupt, we can find values of y by incrementing x from $x = x_1$, to $x = x_2$. By scan-converting these calculated x, y values, we represent the line as a sequence of pixels.

DDA Algorithm

```
Step1: Start Algorithm
```

Step2: Declare $x_1, y_1, x_2, y_2, dx, dy, x, y$ as integer variables.

Step3: Enter value of x_1, y_1, x_2, y_2 .

Step4: Calculate $dx = x_2 - x_1$

Step5: Calculate dy = y_2 - y_1

Step6: If ABS (dx) > ABS (dy)

Then step = abs (dx)

Else

```
Step7: x<sub>inc</sub>=dx/step
```

y_{inc}=dy/step

assign $x = x_1$

assign $y = y_1$

Step8: Set pixel (x, y)

Step9: $x = x + x_{inc}$

 $y = y + y_{inc}$

Set pixels (Round (x), Round (y))

Step10: Repeat step 9 until $x = x_2$

Step11: End Algorithm

Bresenham's Line Algorithm

Step1: Start Algorithm

Step2: Declare variable x₁,x₂,y₁,y₂,d,i₁,i₂,dx,dy

```
Step3: Enter value of x_1, y_1, x_2, y_2
```

Where x₁,y₁ are coordinates of starting point

And x₂,y₂ are coordinates of Ending point

Step4: Calculate $dx = x_2 - x_1$

Calculate $dy = y_2 - y_1$ Calculate $i_1 = 2^* dy$ Calculate $i_2 = 2^* (dy - dx)$ Calculate $d = i_1 - dx$

Step5: Consider (x, y) as starting point and x_{end} as maximum possible value of x.

```
If dx < 0

Then x = x_2

y = y_2

x_{end} = x_1

If dx > 0

Then x = x_1

y = y_1

x_{end} = x_2
```

Step6: Generate point at (x,y)coordinates.

```
Step7: Check if whole line is generated.
          If x > = x_{end}
          Stop.
Step8: Calculate co-ordinates of the next pixel
          If d < 0
            Then d = d + i_1
          If d ≥ 0
      Then d = d + i_2
          Increment y = y + 1
Step9: Increment x = x + 1
Step10: Draw a point of latest (x, y) coordinates
Step11: Go to step 7
Step12: End of Algorithm
```

MUTIPLE CHOICE QUESTIONS:

Sr no	Question	Option A	Option B	OptionC	OptionD
1	The electron beam is swept across the screen, one row at a time, from top to bottom.	Random Scan System	Raster Scan System	both	none
2	Its resolution is good because this system produces smooth lines drawings because CRT beam directly follows the line path.	Random Scan System	Raster Scan System	Rapid Scan System	all of these
3	The electron beam is directed only to the parts of screen where a picture is to be drawn.	Raster Scan System	Rapid Scan System	Random Scan System	none
4	In technique of CRT coated with two phosphor layers usually red and green. That shows the	outer layer of green	outer layer of red	inner layer of green	b & c
5	Its resolution is poor because raster system in contrast produces zigzag lines that are plotted as discrete point sets.	Raster Scan System	Random Scan System	no scan system	all of these

http://www.engppt.com/search/label/Computer%20Graphics

