
FACULTY OF ENGINEERING & TECHNOLOGY

Lecture : 01

Mr. Nilesh
Assistant Professor

Computer Science & Engineering

 Outline

 Introduction of Design and Analysis

 Analysis of Algorithms

 Need of Analysis

I. Methodology of Analysis

II. Behavior of Algorithms

III. Asymptotic Notations (ASN)

 Introduction of Design and Analysis

 Consists of Finite set of Steps to solve a problem

Ex: 1. X= Y+Z

2. Read(a)

3. for i 1 to n

X=Y+Z

One or more operations

I. definiteness(Clear)

II. Effective

 May accept one or More Inputs

 Must produce at least on Output

 ALGORITHMS

 Life Cycle Steps

1. Problem Define

2. Requirements Specification

3. Design(Logic)

4. Express(Algo/Flowchart)

5. Validation(correctness)

6. Analysis

7. Implementation

8. Testing & Debugging

DAA

 Need of Algorithms

 Resource Comparison
1. Time
2. Space
3. Energy
4. Bond width
5. Register

 Performance Comparison : Which also is best among all.

 Methodology of Analysis

How much time taken by it
X=Y+Z

It depends on- Platform
• Hardware
• Software

1. Posterior Analysis:
I. Platform Dependent
II. Experimentation

2. Priori Analysis:
I. Platform Independent
II. Order of Magnitude
III. Operations: +,-,*

 Need of Algorithms

 Posteriori Analysis

Advantages: Exact/ Real values of time & Space in units

Disadvantage: Difficult to carry out

Non- Uniform values gives.

 Oder of Magnitude: refers of frequency (No. of times) of the
function/operations Involved in the steps/ statements.

 Behavior of Algorithms

 Types of Analysis:
1. Worst case
2. Best case
3. Average Case

Consider the Example

Given --- (a1, a2, a3, a4 …an)

I/P --- Inc. Order, I1
Dec. Order, I2
Random ,I3

 Behavior of Algorithms

 Worst-case: maximum number of steps taken on
any instance of size n.

 Best-case: minimum number of steps taken on any
instance of size n.

 Average case: average number of steps taken on
any instance of size n.

 Asymptotic Notations

 We can never provide an exact number to define the

time required and the space required by the algorithm.

 It is an express or standard notations of time and space,

known as Asymptotic Notations.

 Mathematical Representation

 Bounds of Function

1. Upper

2. Lower

3. Tight

 Asymptotic Notations

 Time complexity of T(n) = (n2 + 3n + 4) quadratic equation
 For large values of n, the 3n + 4 part will become insignificant

compared to the n2 part.

 Types of Asymptotic Notations

We use three types of asymptotic notations to represent the

growth of any algorithm, as input increases:

1.Big Theta (Θ)

2.Big Oh(O)

3.Big Omega (Ω)

 Asymptotic Notations

• Given functions f(n) and g(n), we say that f(n) is O(g(n)) if
there are positive constants
c and n0 such that

f(n) cg(n) for n n0

• Example: 2n + 10 is O(n)

– 2n + 10 cn

– (c 2) n 10

– n 10/(c 2)

– Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000

n

3n

2n+10

n

 Big Oh(O)

 Big Omega (Ω) & Big- Theta

big-Omega

 f(n) is (g(n)) if there is a constant c > 0

 and an integer constant n0 1 such that

 f(n) c•g(n) for n n0

big-Theta

 f(n) is (g(n)) if there are constants c’ > 0 and c’’ > 0
and an integer constant n0 1 such that c’•g(n) f(n)
 c’’•g(n) for n n0

Big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

 f(n) is (g(n)) if f(n) is asymptotically greater than or equal to
g(n)

big-Theta

 f(n) is (g(n)) if f(n) is asymptotically equal to g(n)

Small/Little Notation:
• Small- Oh: Proper Upper Bond

• Small-Omega: Proper Lower Bond

 Notes

 Some common asymptotic notations −

constant − Ο(1)

logarithmic − Ο(log n)

linear − Ο(n)

n log n − Ο(n log n)

quadratic − Ο(n
2
)

cubic − Ο(n
3
)

polynomial − n
Ο(1)

exponential − 2
Ο(n)

Q: What is time complexity of fun()?
int fun(int n)
{

int count = 0;
for (int i = n; i > 0; i /= 2)

for (int j = 0; j < i; j++)
count += 1;

return count;
}
Options:

A. O(n^2)
B. O(nLogn)
C. O(n)
D. O(nLognLogn)

 Practice

Q: What is the time complexity of fun()?
int fun(int n)
{

int count = 0;
for (int i = 0; i < n; i++)

for (int j = i; j > 0; j--)
count = count + 1;

return count;
}

Options:
A. Theta (n)
B. Theta (n^2)
C. Theta (n*Logn)
D. Theta (nLognLogn)

 Practice

