

FACULTY OF ENGINEERING & TECHNOLOGY

Lecture: 01

Mr. Nilesh

Assistant Professor Computer Science & Engineering

Outline

- Introduction of Design and Analysis
- Analysis of Algorithms
- Need of Analysis
 - I. Methodology of Analysis
 - II. Behavior of Algorithms
 - III. Asymptotic Notations (ASN)

> ALGORITHMS

- Consists of Finite set of Steps to solve a problem
- Ex: 1. X= Y+Z
 2. Read(a)
 3. for i 1 to n
 X=Y+Z
 One or more operations
 I. definiteness(Clear)
 II. Effective
 ♦ May accept one or More Inputs
- Must produce at least on Output

□ Life Cycle Steps

- 1. Problem Define
- 2. Requirements Specification
- 3. Design(Logic)
- 4. Express(Algo/Flowchart)
- 5. Validation(correctness)
- 6. Analysis
- 7. Implementation
- 8. Testing & Debugging

□ Need of Algorithms

- Resource Comparison
 - 1. Time
 - 2. Space
 - 3. Energy
 - 4. Bond width
 - 5. Register

Performance Comparison : Which also is best among all.

Methodology of Analysis

How much time taken by it X=Y+Z It depends on- Platform

- Hardware
- Software
- 1. Posterior Analysis:
 - I. Platform Dependent
 - II. Experimentation
- 2. Priori Analysis:
 - I. Platform Independent
 - II. Order of Magnitude
 - III. Operations: +,-,*

Need of Algorithms

Posteriori Analysis

Advantages: Exact/ Real values of time & Space in units

Disadvantage: Difficult to carry out

Non- Uniform values gives.

Oder of Magnitude: refers of frequency (No. of times) of the function/operations Involved in the steps/ statements.

Behavior of Algorithms

- Types of Analysis:
 - 1. Worst case
 - 2. Best case
 - 3. Average Case

Consider the Example

Given $\dots \rightarrow$ (a1, a2, a3, a4 \dots an)

I/P ---→ Inc. Order, I1 Dec. Order, I2 Random ,I3

Behavior of Algorithms

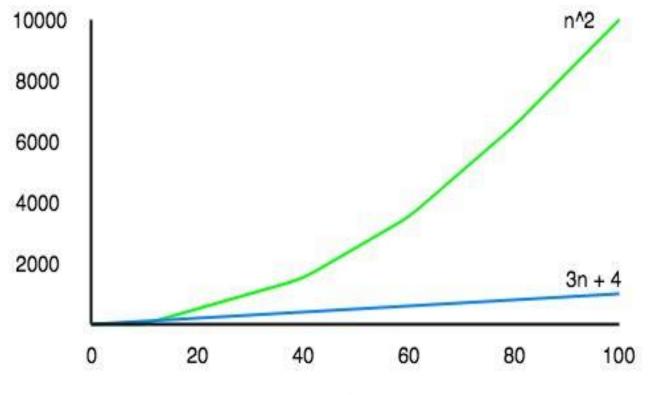
- Worst-case: maximum number of steps taken on any instance of size n.
- Best-case: minimum number of steps taken on any instance of size n.
- Average case: average number of steps taken on any instance of size n.

□ Asymptotic Notations

- We can never provide an exact number to define the time required and the space required by the algorithm.
- It is an express or standard notations of time and space, known as Asymptotic Notations.
- Mathematical Representation
- Bounds of Function
 - 1. Upper
 - 2. Lower
 - 3. Tight

□ Asymptotic Notations

- Time complexity of $T(n) = (n^2 + 3n + 4) \rightarrow$ quadratic equation
- For large values of n, the 3n + 4 part will become insignificant compared to the n2 part.



□ Asymptotic Notations

Types of Asymptotic Notations

We use three types of asymptotic notations to represent the

growth of any algorithm, as input increases:

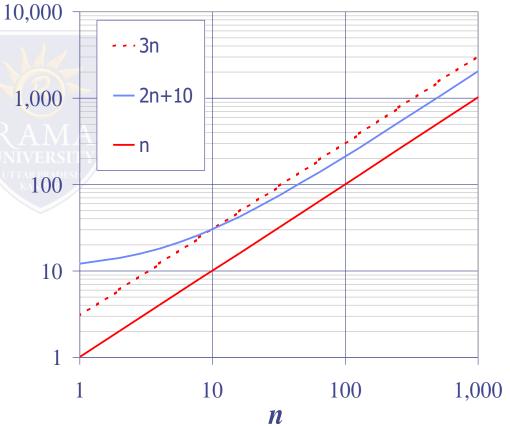
1.Big Theta (Θ)

2.Big Oh(O)

3.Big Omega (Ω)

\Box Big Oh(O)

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants
 c and n_o such that
 - $f(n) \leq cg(n)$ for $n \geq n_o$
- Example: 2*n* + 10 is *O*(*n*)
 - 2**n** + 10 ≤ **cn**
 - − (**c** − 2) **n** ≥ 10
 - $n \ge 10/(c 2)$
 - Pick \mathbf{c} = 3 and $\mathbf{n}_{\mathbf{o}}$ = 10



□ Big Omega (Ω) & Big- Theta

→big-Omega

- * f(n) is $\Omega(g(n))$ if there is a constant c > 0
- ♦ and an integer constant $n_0 \ge 1$ such that
- * $f(n) \ge c \bullet g(n)$ for $n \ge n_o$
- →big-Theta
 - f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0and an integer constant $n_0 \ge 1$ such that $c' \bullet g(n) \le f(n) \le c'' \bullet g(n)$ for $n \ge n_0$

Notes

→Big-Oh

- f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
- →big-Omega
 - f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)
- →big-Theta
 - f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

Small/Little Notation:

- Small- Oh: Proper Upper Bond
- Small-Omega: Proper Lower Bond

□ Some common asymptotic notations –

constant	-	O(1)
logarithmic	_	O(log n)
linear		O(n)
n log n		O(n log n)
quadratic	UNIVERSITY UTTA-RADESH KANPUR	O(n ²)
cubic	_	O(n ³)
polynomial	_	n ^{O(1)}
exponential	_	2 ^{O(n)}

Practice

```
Q: What is time complexity of fun()?
   int fun(int n)
     int count = 0;
     for (int i = n; i > 0; i /= 2)
      for (int j = 0; j < i; j++)
        count += 1;
     return count;
   Options:
       A. O(n^2)
       B. O(nLogn)
       C. O(n)
       D. O(nLognLogn)
```

Practice

```
Q: What is the time complexity of fun()?
int fun(int n)
{
    int count = 0;
    for (int i = 0; i < n; i++)
    for (int j = i; j > 0; j--)
        count = count + 1;
    return count;
    }
```

```
Options:
A. Theta (n)
B. Theta (n^2)
C. Theta (n*Logn)
D. Theta (nLognLogn)
```