UNIVERSITY

WWW.ramauniversity.ac.in

FACULTY OF ENGINEERING & TECHNOLOGY

Lecture : 01

Mr. Nilesh

Assistant Professor
Computer Science & Engineering



% Introduction of Design and Analysis
¢ Analysis of Algorithms

** Need of Analysis

. Methodology of Analysis

Il.  Behavior of Algorithms

IIl.  Asymptotic Notations (ASN)



d Introduction of Design and Analysis

» ALGORITHMS

X/

% Consists of Finite set of Steps to solve a problem
EX: 1. X=Y+Z
2. Read(a)
3.fori 1ton
X=Y+Z
One or more operations
|. definiteness(Clear)
ll. Effective
s May accept one or More Inputs

/

% Must produce at least on Output



U Life Cycle Steps

© N o Vv~ W

Problem Define
Requirements Specification
Design(Logic)
Express(Algo/Flowchart)
Validation(correctness)
Analysis

Implementation

Testing & Debugging

DAA



d Need of Algorithms

\/

** Resource Comparison

1. Time

2. Space

3. Energy

4. Bond width
5. Register

\/

*¢ Performance Comparison : Which also is best among all.



d Methodology of Analysis

How much time taken by it
X=Y+Z
It depends on- Platform
* Hardware
» Software

1. Posterior Analysis:
|.  Platform Dependent
lI. Experimentation
2. Priori Analysis:
|.  Platform Independent
Il. Order of Magnitude
lll. Operations: +,-,*



d Need of Algorithms

A/

*¢ Posteriori Analysis

Advantages: Exact/ Real values of time & Space in units
Disadvantage: Difficult to carry out

Non- Uniform values gives.

% Oder of Magnitude: refers of frequency (No. of times) of the
function/operations Involved in the steps/ statements.



d Behavior of Algorithms

\/

¢ Types of Analysis:
1. Worst case

2. Best case

3. Average Case

“* Consider the Example
Given—-2> (a1,a2,a3,a4...an)

|/P ---—2> Inc. Order, I1
Dec. Order, 12
Random,I3



d Behavior of Algorithms

= Worst-case: maximum number of steps taken on
any instance of size n.

" Best-case: minimum number of steps taken on any
instance of size n.

= Average case: average number of steps taken on
any instance of size n.



d Asymptotic Notations

= We can never provide an exact number to define the
time required and the space required by the algorithm.
" [tis an express or standard notations of time and space,
known as Asymptotic Notations.
* Mathematical Representation
* Bounds of Function
1. Upper
2. Lower

3. Tight



d Asymptotic Notations

= Time complexity of T(n) = (n?+ 3n + 4) = quadratic equation
= Forlarge values of n, the 3n + 4 part will become insignificant
compared to the n2 part.

10000 y
8000 y
6000 /

4000 /
e

2000 _/ 3n + 4

0 20 40 60 80 100




d Asymptotic Notations

“* Types of Asymptotic Notations

We use three types of asymptotic notations to represent the
growth of any algorithm, as input increases:

1.Big Theta (0)

2.Big Oh(O)

3.Big Omega (Q)



* Given functions f(n) and g(n), we say that f(n) is O(g(n)) if
there are positive constants
¢ and n, such that

f(n) <cg(n) forn>n, 10,000 .

« E le: 2n + 10 is O(n
xamp ¥ (n) o3 - L
—2n+10<c¢n /

—n
— (c— >
(c—2)n>10 o 2

— n>10/(c—2) /
— Pickec=3 and n =10 /

10

1 10 100 1,000



4 Big Omega (Q) & Big- Theta

—2>big-Omega
» f(n) is Q(g(n)) if thereis a constantc >0
and an integer constant n, > 1 such that
f(n)>ceg(n)forn>n,

—>big-Theta

s f(n)is ®(g(n)) if there are constants ¢’ >o0and ¢” > 0
and an integer constant n, > 1 such that c’eg(n) <f(n)
<c”eg(n)forn=n,



—>Big-Oh
s f(n)is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
—2>big-Omega
. f((n))is Q(g(n)) if f(n) is asymptotically greater than or equal to
g(n
—>big-Theta
m f(n)is ®(g(n)) if f(n) is asymptotically equal to g(n)

Small/Little Notation:

Small- Oh: Proper Upper Bond
Small-Omega: Proper Lower Bond



J Some common asymptotic notations -

constant - O(1)
logarithmic - O(log n)
linear - O(n)

nlogn - O(nlogn)
quadratic — o(n’)

cubic - o(n’)
polynomial — "

exponential — 2



Q: What is time complexity of fun()?
int fun(int n)
{
int count = 0;
for (inti=n;i>o0;i/=2)
for (intj=o0;j<i; j++)
count +=1;
return count;
}
Options:
A. O(n"2)
B. O(nLogn)
C. O(n)
D. O(nLognLogn)



Q: What is the time complexity of fun()?

int fun(int n)
{

int count = 0;

for (inti=0;i<n;i++)

for (intj=1i;j>0;j-)
count = count + 1,
return count;

}

Options:
A. Theta (n)
B. Theta (n"*2)
C. Theta (n*Logn)
D. Theta (nLognLogn)



