
FACULTY OF ENGINEERING & TECHNOLOGY

Lecture : 01

Mr. Nilesh
Assistant Professor

Computer Science & Engineering

 Outline

 Introduction of Design and Analysis

 Analysis of Algorithms

 Need of Analysis

I. Methodology of Analysis

II. Behavior of Algorithms

III. Asymptotic Notations (ASN)

 Introduction of Design and Analysis

 Consists of Finite set of Steps to solve a problem

Ex: 1. X= Y+Z

2. Read(a)

3. for i 1 to n

X=Y+Z

One or more operations

I. definiteness(Clear)

II. Effective

 May accept one or More Inputs

 Must produce at least on Output

 ALGORITHMS

 Life Cycle Steps

1. Problem Define

2. Requirements Specification

3. Design(Logic)

4. Express(Algo/Flowchart)

5. Validation(correctness)

6. Analysis

7. Implementation

8. Testing & Debugging

DAA

 Need of Algorithms

 Resource Comparison
1. Time
2. Space
3. Energy
4. Bond width
5. Register

 Performance Comparison : Which also is best among all.

 Methodology of Analysis

How much time taken by it
X=Y+Z

It depends on- Platform
• Hardware
• Software

1. Posterior Analysis:
I. Platform Dependent
II. Experimentation

2. Priori Analysis:
I. Platform Independent
II. Order of Magnitude
III. Operations: +,-,*

 Need of Algorithms

 Posteriori Analysis

Advantages: Exact/ Real values of time & Space in units

Disadvantage: Difficult to carry out

Non- Uniform values gives.

 Oder of Magnitude: refers of frequency (No. of times) of the
function/operations Involved in the steps/ statements.

 Behavior of Algorithms

 Types of Analysis:
1. Worst case
2. Best case
3. Average Case

Consider the Example

Given --- (a1, a2, a3, a4 …an)

I/P --- Inc. Order, I1
Dec. Order, I2
Random ,I3

 Behavior of Algorithms

 Worst-case: maximum number of steps taken on
any instance of size n.

 Best-case: minimum number of steps taken on any
instance of size n.

 Average case: average number of steps taken on
any instance of size n.

 Asymptotic Notations

 We can never provide an exact number to define the

time required and the space required by the algorithm.

 It is an express or standard notations of time and space,

known as Asymptotic Notations.

 Mathematical Representation

 Bounds of Function

1. Upper

2. Lower

3. Tight

 Asymptotic Notations

 Time complexity of T(n) = (n2 + 3n + 4)  quadratic equation
 For large values of n, the 3n + 4 part will become insignificant

compared to the n2 part.

 Types of Asymptotic Notations

We use three types of asymptotic notations to represent the

growth of any algorithm, as input increases:

1.Big Theta (Θ)

2.Big Oh(O)

3.Big Omega (Ω)

 Asymptotic Notations

• Given functions f(n) and g(n), we say that f(n) is O(g(n)) if
there are positive constants
c and n0 such that

f(n)  cg(n) for n  n0

• Example: 2n + 10 is O(n)

– 2n + 10  cn

– (c  2) n  10

– n  10/(c  2)

– Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000

n

3n

2n+10

n

 Big Oh(O)

 Big Omega (Ω) & Big- Theta

big-Omega

 f(n) is (g(n)) if there is a constant c > 0

 and an integer constant n0  1 such that

 f(n)  c•g(n) for n  n0

big-Theta

 f(n) is (g(n)) if there are constants c’ > 0 and c’’ > 0
and an integer constant n0  1 such that c’•g(n)  f(n)
 c’’•g(n) for n  n0

Big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

 f(n) is (g(n)) if f(n) is asymptotically greater than or equal to
g(n)

big-Theta

 f(n) is (g(n)) if f(n) is asymptotically equal to g(n)

Small/Little Notation:
• Small- Oh: Proper Upper Bond

• Small-Omega: Proper Lower Bond

 Notes

 Some common asymptotic notations −

constant − Ο(1)

logarithmic − Ο(log n)

linear − Ο(n)

n log n − Ο(n log n)

quadratic − Ο(n
2
)

cubic − Ο(n
3
)

polynomial − n
Ο(1)

exponential − 2
Ο(n)

Q: What is time complexity of fun()?
int fun(int n)
{

int count = 0;
for (int i = n; i > 0; i /= 2)

for (int j = 0; j < i; j++)
count += 1;

return count;
}
Options:

A. O(n^2)
B. O(nLogn)
C. O(n)
D. O(nLognLogn)

 Practice

Q: What is the time complexity of fun()?
int fun(int n)
{

int count = 0;
for (int i = 0; i < n; i++)

for (int j = i; j > 0; j--)
count = count + 1;

return count;
}

Options:
A. Theta (n)
B. Theta (n^2)
C. Theta (n*Logn)
D. Theta (nLognLogn)

 Practice

