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Running Time of BUILD MAX HEAP

 Running time: O(nlgn)

• This is not an asymptotically tight upper 

bound

Alg: BUILD-MAX-HEAP(A)

1. n = length[A]

2. for i ← n/2 downto 1

3. do MAX-HEAPIFY(A, i, n) O(lgn)
O(n)
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Running Time of BUILD MAX HEAP

• HEAPIFY takes O(h)  the cost of HEAPIFY on a node i is proportional 

to the height of the node i in the tree
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Running Time of BUILD MAX HEAP
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Heapsort
• Goal:

– Sort an array using heap representations

• Idea:

– Build a max-heap from the array

– Swap the root (the maximum element) with the last element in the 

array

– “Discard” this last node by decreasing the heap size

– Call MAX-HEAPIFY on the new root

– Repeat this process until only one node remains 
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Example: A=[7, 4, 3, 1, 2]

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

MAX-HEAPIFY(A, 1, 1)
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Alg: HEAPSORT(A)

1. BUILD-MAX-HEAP(A)

2. for i ← length[A] downto 2

3. do exchange A[1] ↔ A[i]

4. MAX-HEAPIFY(A, 1, i - 1)

• Running time: O(nlgn) --- Can be shown to be 

Θ(nlgn)

O(n)

O(lgn)

n-1 times
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Priority Queues

12 4  
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Operations 
on Priority Queues

• Max-priority queues support the following operations:

– INSERT(S, x): inserts element x into set S

– EXTRACT-MAX(S): removes and returns element of S with largest key

– MAXIMUM(S): returns element of S with largest key

– INCREASE-KEY(S, x, k): increases value of element x’s key to k

(Assume k ≥ x’s current key value)
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HEAP-MAXIMUM

Goal:

– Return the largest element of the heap

Alg: HEAP-MAXIMUM(A)

1. return A[1] Running time: O(1)

Heap A:

Heap-Maximum(A) returns 7
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HEAP-EXTRACT-MAX
Goal:

– Extract the largest element of the heap (i.e., return the max value 

and also remove that element from the heap 

Idea: 

– Exchange the root element with the last

– Decrease the size of the heap by 1 element

– Call MAX-HEAPIFY on the new root, on a heap of size n-1

Heap A: Root is the largest element
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Example: HEAP-EXTRACT-MAX
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Call MAX-HEAPIFY(A, 1, n-1)



14

HEAP-EXTRACT-MAX

Alg: HEAP-EXTRACT-MAX(A, n)

1. if n < 1

2. then error “heap underflow”

3. max ← A[1]

4. A[1] ← A[n]

5. MAX-HEAPIFY(A, 1, n-1) remakes heap

6. return max

Running time: O(lgn)
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HEAP-INCREASE-KEY

• Goal:

– Increases the key of an element i in the heap

• Idea:

– Increment the key of A[i] to its new value

– If the max-heap property does not hold anymore: traverse a path 
toward the root to find the proper place for the newly increased key
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Example: HEAP-INCREASE-KEY
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HEAP-INCREASE-KEY

Alg: HEAP-INCREASE-KEY(A, i, key)

1. if key < A[i]

2. then error “new key is smaller than current key”

3. A[i] ← key

4. while i > 1 and A[PARENT(i)] < A[i]

5. do exchange A[i] ↔ A[PARENT(i)]

6. i ← PARENT(i)

• Running time: O(lgn)
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-

MAX-HEAP-INSERT

• Goal:

– Inserts a new element into a max-heap

• Idea:

– Expand the max-heap with a new element 

whose key is -

– Calls HEAP-INCREASE-KEY to set the key of 

the new node to its correct value and 

maintain the max-heap property
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Example: MAX-HEAP-INSERT
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Insert value 15:

- Start by inserting -
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Call HEAP-INCREASE-KEY on A[11] = 15
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MAX-HEAP-INSERT

Alg: MAX-HEAP-INSERT(A, key, n)

1. heap-size[A] ← n + 1

2. A[n + 1] ← -

3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)
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Summary

• We can perform the following operations on 

heaps:

– MAX-HEAPIFY O(lgn)

– BUILD-MAX-HEAP O(n)

– HEAP-SORT O(nlgn)

– MAX-HEAP-INSERT O(lgn)

– HEAP-EXTRACT-MAX O(lgn)

– HEAP-INCREASE-KEY O(lgn)

– HEAP-MAXIMUM O(1)

Average
O(lgn)


