UNIVERSITY

WWW.ramauniversity.ac.in

FACULTY OF ENGINEERING & TECHNOLOGY

Lecture -05 : Heap Short (Part-2)

Mr. Nilesh

Assistant Professor
Computer Science & Engineering

K/

** Heap Short

Alg: BUILD-MAX-HEAP(A)
1. n=length[A]
2. fori<|n/2]downto 1
| o(n)
3. do MAX-HEAPIFY(A,i,n) O(Ign)

= Running time: O(nlgn)

* This is not an asymptotically tight upper

bound

 HEAPIFY takes O(h) = the cost of HEAPIFY on a node i is proportional
to the height of the node i in the tree

—T(n) Z”h (h-i) =Qn)

Height Level No. of nodes

h, = 3 (LignJ) i=0 20
hlzzk 6}>\(?\ i=1 4;1

v— A >
S
Cé dbdbdb =3 (gn)) 22

h—1 height of the heap rooted at level i
2! number of nodes at level |

— r]h Cost of HEAPIFY at level i * number of nodes at that level

— g ?(h—l) Replace the values of n; and h; computed before
|

— — zﬂ Multiply by 2" both at the nominator and denominator and
| write 2' as i

_Zn Change variables: k=h - i

<n k The sum above is smaller than the sum of all elements to «
and h =lIgn

:qn) The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

e Goal:
— Sort an array using heap representations
e |dea:

— Build a max-heap from the array

— Swap the root (the maximum element) with the last

array
— “Discard” this last node by decreasing the heap size
— Call MAX-HEAPIFY on the new root

— Repeat this process until only one node remains

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

@O@ @
Qi i@ G Al1]2]3]4]7
® O ® O

MAX-HEAPIFY(A, 1, 1)

BUILD-MAX-HEAP(A)

1.
. O(n)
2. fori <« length[A]downto 2 N
3. do exchange A[1] « A[i]
4. MAX-HEAPIFY(A, 1, i - 1) L n-1times
O(lgn)
* Running time: O(nlgn) --- Can be shown to be J

O(nlgn)

Properties
- Each element 1s associated with a value (priority)

- The key with the highest (or lowest) priority 1s extracted first

* Max-priority queues support the following operations:
— INSERT(S, x): inserts element X into set S

— EXTRACT-MAX(S): removes and returns element of S with largest key

— MAXIMUM(S): returns element of S with largest key

— INCREASE-KEY(S, x, k): increases value of element x’s key to k

(Assume k 2 X’s current key value)

Goal:
— Return the largest element of the heap

ﬁl{g: HEAP—MAXIMUM(A) _ _
3 return A[1] Running time: O(1)

Heap A:

Heap-Maximum(A) returns 7

Goal:

|dea:

Extract the largest element of the heap (i.e., return the max value
and also remove that element from the heap

Exchange the root element with the last
Decrease the size of the heap by 1 element

Call MAX-HEAPIFY on the new root, on a heap of size n-1

Heap A: @ Root is the largest element

O@lRO

max = 16 (14 10
&) @@ G
2 @

Heap size decreased with 1

19

(8) 19

A

Call MAX-HEAPIFY(A, 1, n-1)

Alg: HEAP-EXTRACT-MAX(A, n)
1. ifn<1
2. then error “heap underflow”

3. max «— A[1]

4. A[l] < A[n]
5. MAX-HEAPIFY(A, 1, n-1) ren}fkes heap

6. return max

Running time: O(lgn)

* Goal:

— Increases the key of an element i in the heap
* l|dea:

— Increment the key of A[i] to its new value

— |If the max-heap property does not hold anymore: traverse a path
toward the root to find the proper place for the newly increased key

Key [i] < 15 9 eo

Alg: HEAP-INCREASE-KEY(A, i, key)

if key < A[i]
then error “new key is smaller than current key”
Ali] — key
while i > 1 and A[PARENT(i)] < A[i]
do exchange A[i] <« A[PARENT(i)]
i — PARENT(i)

ok wnNeE

* Running time: O(lgn)

Key [i] < 15

A

e @Goal:

— Inserts a new element into a max-heap

* l|dea:
— Expand the max-heap with a new element
whose key is -0
— Calls HEAP-INCREASE-KEY to set the key of
the new node to its correct value and
maintain the max-heap property

Insert value 15: Increase the key to 15
- Start by inserting -oo Call HEAP-INCREASE-KEY on A[11] =

The restored heap containing
the newly added element

xﬁ.ﬁ

Alg: MAX-HEAP-INSERT(A, key, n)
1. heap-size[A]l<n+1

2. An+1]« -

3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)

 We can perform the following operations on

heaps:
— MAX-HEAPIFY O(Ign)
— BUILD-MAX-HEAP O(n)
— HEAP-SORT O(nlgn).
— MAX-HEAP-INSERT O(lgn)
» Average
— HEAP-EXTRACT-MAX O(lgn) O(Ign)
— HEAP-INCREASE-KEY O(lgn) -

EE— 1 =y 0w v Fin 41V, 19 1.7/ EESEEE— o | B SEEEE——

