
FACULTY OF ENGINEERING & TECHNOLOGY

Lecture : 06

Mr. Nilesh
Assistant Professor

Computer Science & Engineering

 Outline

 Introduction Sorting and Order Statistics

 Types of Sorting algorithms

 Order statistics

 Selection Sort

 Introduction Sorting and Order Statistics

Algorithms that solve the following sorting problem:

Input: A sequence of n numbers <a1, a2, . . . , an>.

Output:

A permutation (reordering) <a'1, a'2, . . . , a'n> of the input sequence such that a'1

a'2 a'n.

The input sequence is usually an n-element array,

although it may be represented in some other fashion, such as a linked list.

 Introduction

 The structure of the data

• The numbers to be sorted are rarely isolated values.

• That may be a record (Each record contains a key)

• which is the value to be sorted,

• When a sorting algorithm permutes the keys, it must permute the satellite data

as well.

• If each record is large in size - we often permute an array of pointers to the

records rather than the records themselves in order to minimize data

movement.

 Types of Sorting algorithms

 How many Sorting also. We have?

• Selection Sort

• Bubble Sort

• Insertion Sort

• Merge Sort

• Quick Sort

• Heap Sort

• Radix Sort

• ShellSort

• Pigeonhole Sort

• Cycle Sort

• Cocktail Sort

• Strand Sort

• Recursive Bubble Sort

• Recursive Insertion Sort

• Iterative Merge Sort

• Iterative Quick Sort

• Counting Sort

• Bucket Sort

• TimSort

 Order statistics

• Order statistics are sample values placed in ascending order. The study of

order statistics deals with the applications of these ordered values and their

functions.

Let’s say you had three weights:

X1 = 22 kg, X2 = 44 kg, and X3 = 12 kg.

To get the order statistics (Yn), put the items in numerical increasing order:

Y1 = 12 kg

Y2 = 22 kg

Y3 = 44 kg

The kth smallest X value is normally called the kth order statistic.

 Selection Sort

Suppose an array A with N

1. Find the smallest element in the list & put it in the first position.

2. Find 2nd smallest element in the list and put in the second position

3. So on

 Time Complexity

Notes:

Outer loop executes N-1 times(No each rd.. For final elements)

Inner loop executes N-i-1 comparisons.

(N-1)* (N-2)+….+2+1 = N*(N-1)/2

Best case: Square(n)

Average Case: Square(n)

Advantages

 Easy to write

 Can be done “In place”

 Can be done on linked lists too(Keep a tail Pointer)

Disadvantages

• It is about square(n) even in the best case for comparisons.

• So the running time is Approx. Square(n)

Initial Configuration

(search all cards and find the largest)

Example

Swap the two cards

As before,
the swap is
performed

in three
steps.

Sorted Unsorted

Among the remaining cards

the king is the largest.

It will remain in place.

But the algorithm may perform

Some empty operations

(ie., swap it with itself in

place)

Sorted Unsorted

Among the remaining cards

the queen is the largest.

It will remain in place.

But the algorithm may perform

Some empty operations

(i.e., swap it with itself in place)

Sorted Unsorted

Among the remaining cards

the Jack is the largest.

It will remain in place.

But the algorithm may perform

Some empty operations

(i.e., swap it with itself in place)

As before,
the swap is
performed

in three
steps.

Sorted Unsorted

We are down to the last card.

Because there is only one and

Because we know that it is

Smaller than all the rest

We don’t need to do anything

Else with it. This is why the

Algorithm goes up to < N-1

Sorted

All cards are now sorted.

