

FACULTY OF ENGINEERING & TECHNOLOGY

LOGIC GATE

Logic gates are used to carry out logical operations on single or multiple binary inputs & give one binary output. In simple terms, logic gates are the electronic circuits in a digital system.

Truth Table

A truth table shows how a logic circuit's output responds to various combinations of the inputs, using logic 1 for true and logic 0 for false.

Type of Logic Gate

There are three types of logic gate

- 1. Basic Gate (AND,OR & NOT)
- 2. Universal Gate (NAND & NOR)
- 3. Arithmetic Gate (EXOR & EXNOR)
- 1. Basic Gate
- · AND Gate:

In AND gate the output of an AND gate attains the state 1 if and only if all the inputs are in state 1.

Symbol	Truth Table		
2-input AND Gate	Α	В	Y
^	0	0	0
A	0	1	0
B - J	1	0	0
	1	1	1
Boolean Expression Y = A.B	Read as A AND B gives Y		

NUMBER SYSTEM

OR Gate:

In OR gate the output of an OR gate attains the state 1 if one or more inputs attain the state 1.

Symbol	Truth Table		
2-input OR Gate	Α	В	Υ
^ _	0	0	0
_ Y=A+B	0	1	1
	1	0	1
Here	1	1	1
Boolean Expression Y = A + B	Read as A OR B gives Y		

NOT Gate:

In NOT gate the output of a NOT gate attains the state 1 if and only if the input does not attain the state 1.

Symbol	Truth Table	
	А	Y
$A \longrightarrow Y = \overline{A}$	0	1
	1	0
Boolean Expression Y = not A or Á	Read as inverse of A gives Y	

NUMBER SYSTEM

2. Universal Gate:

NAND Gate

This gate is the combination of AND & NOT gate.

Symbol	Truth Table		
2-input NAND Gate	А	В	Υ
A — Y=(A.B)	0	0	1
	0	1	1
	1	0	1
	1	1	0
Boolean Expression Y = (A . B)'	Read as A N AND B gives Y		

NUMBER SYSTEM

NOR Gate

This gate is the combination of OR & NOT gate.

Symbol	Truth Table		
2-input NAND Gate	А	В	Υ
. —	0	0	1
A — Y=(A+B)	0	1	0
В —	1	0	0
	1	1	0
Boolean Expression Y = (A + B)'	Read as A NOR B gives Y		