

www.ramauniversity.ac.in

FACULTY OF ENGINEERING & TECHNOLOGY

LOGIC GATE

Logic gates are used to carry out logical operations on single or multiple binary inputs & give one binary output. In simple terms, logic gates are the electronic circuits in a digital system.

Truth Table

A truth table shows how a logic circuit's output responds to various combinations of the inputs, using logic 1 for true and logic 0 for false.

Type of Logic Gate

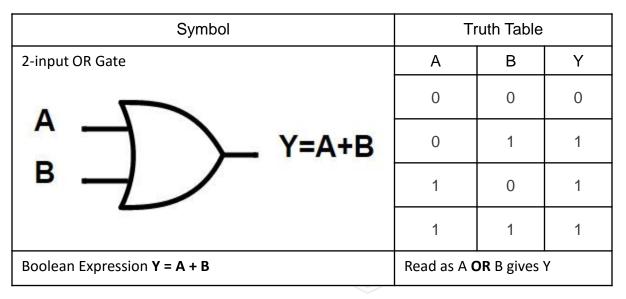
There are three types of logic gate

- 1. Basic Gate (AND,OR & NOT)
- 2. Universal Gate (NAND & NOR)
- 3. Arithmetic Gate (EXOR & EXNOR)

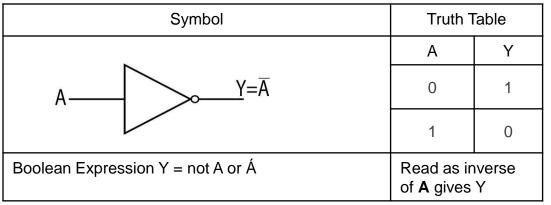
1. Basic Gate

AND Gate:

In AND gate the output of an AND gate attains the state 1 if and only if all the inputs are in state 1.


Symbol	Truth Table		
2-input AND Gate	A	В	Y
	0	0	0
	0	1	0
	1	0	0
	1	1	1
Boolean Expression Y = A.B	Read as A AND B gives Y		

UNIVERSITY


OR Gate:

In OR gate the output of an OR gate attains the state 1 if one or more inputs attain the state 1.

• NOT Gate:

In NOT gate the output of a NOT gate attains the state 1 if and only if the input does not attain the state 1.

NUMBER SYSTEM

2. Universal Gate:

NAND Gate

This gate is the combination of AND & NOT gate.

Symbol	Truth Table		
2-input NAND Gate	А	В	Y
A Y=(A.B)	0	0	1
	0	1	1
	1	0	1
	1	1	0
Boolean Expression Y = (A . B)'	Read as A NAND B gives Y		

•NOR Gate

This gate is the combination of OR & NOT gate.

Symbol	Truth Table		
2-input NAND Gate	A	В	Y
A Y=(A+B)'	0	0	1
	0	1	0
	1	0	0
	1	1	0
Boolean Expression $Y = (A + B)'$	Read as A N OR B gives Y		