

FACULTY OF ENGINEERING & TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

Mendel's Laws

•A scientific law is an evidence-based **description** of a natural phenomenon in a given set of circumstances.

•Mendel's three Laws of Heredity describe what Mendel observed in patterns of inherited traits.

- Monohybrid Cross
- •Dihybrid Cross

Mendel's Monohybrid Cross

Hybrid

The offspring of parents that have different forms of a trait, such as tall and short

Monohybrid cross (*mono* = one)

The two parent plants differed by a single trait – height

 P_1 – parent generation

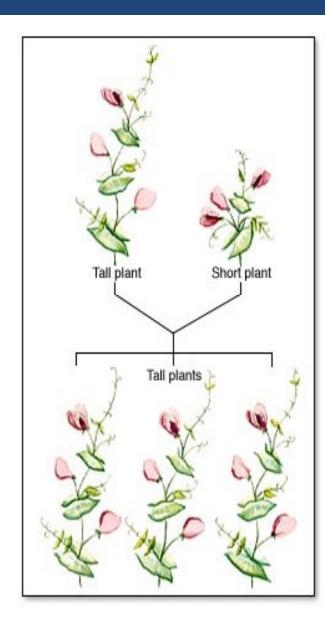
F₁ –first generation

 F_2 – second generation

The First Generation

- •Crossed 2 true breeding plants
 - 1 tall and 1 short
- •All offspring of the 2 parent plants were tall

The Second Generation


- •Self-pollinated the plants from the first generation
- •3/4 the offspring were as tall as the tall plants in the parent and first generation
- •¼ the offspring were as short as the short plant in the parent generation RAMA
- •3:1 ratio tall to short

The rule of unit factors

- •Each organism has 2 factors that control each of its traits
- •These factors are genes
 - •Genes exist in alternative forms called alleles

Ex. Plant height – one alleles is for tall and another is for short

One comes from the mother and one from the father

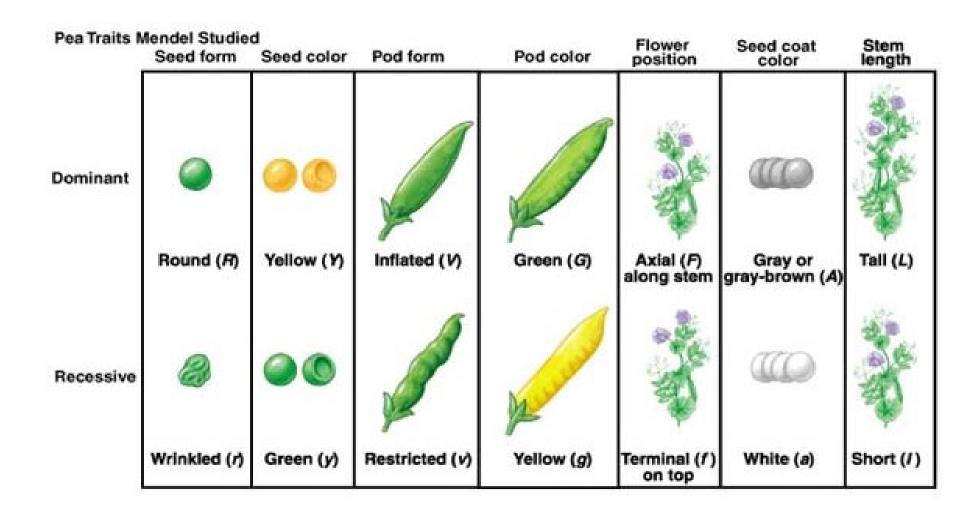
The rule of dominance

- •Each trait has an allele that will be observed more than the other
- •Dominant (gene)

The observed trait Tall plant

•Recessive (gene)

The trait that disappeared
Short plant
Only shows when both alleles are recessive


- •Recording the results for crosses
 - •Dominate allele is always written first
 - •Uppercase letter is used for dominate

T-tall

•Lowercase letter is used for recessive

t - short

Dominate and Recessive

Law of segregation

- •During fertilization, male and female gametes randomly pair to produce 3 combinations of alleles.
- •Concluded that each plant in the F_1 generation carried one dominate allele and one recessive allele and the F_2 generation either received
- •2 dominate; 2 recessive; or one of each

Phenotypes and Genotypes

- •Two organisms can look alike but have different underlying gene combinations
- Phenotype
 - ✓ The way an organism looks or behaves
 - ✓ What you see
- •Genotype
 - ✓ The gene combination an organism contains
 - ✓ The genetic makeup
- •Homozygous
 - ✓ The two alleles for the trait are the **same**
 - ✓TT or tt
- •Heterozygous
 - ✓ The two alleles for the trait are **different**

Dihybrid Crosses

The First Generation

Two true breeding plants (P_1)

RRYY = round yellow seed (homozygous dominate)

rryy = wrinkled green seed (homozygous recessive)

When they were crossed all the plants had round yellow seeds (F₁)

The Second Generation (F₂)

Self-pollinated plants from the first generation

Resulted in 9 round yellow, 3 round green, 3 wrinkled yellow, 1 wrinkled green A ratio of 9:3:3:1

Dihybrid Cross = round yellow X wrinkled green

	RY	RY	RY	RY
ry	RrYy	RrYy	RrYy	RrYy
ry	RrYy	RrYy	RrYy	RyYy
ry	RrYy	RrYy	RrYy	RrYy
ry	RrYy	RrYy	RrYy	RrYy

Heterozygous Cross = round yellow X round yellow

	RY	Ry	rY	ry
RY	RRYY	RRYy	RrYY	RrYy
Ry	RRYy	RRyy	RrYy	Rryy
rY	RrYY	RrYy	rrYY	rrYy
ry	RrYy	Rryy	rrYy	rryy