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1.1 INTRODUCTION
4 sequence Is one of the high h_u:us problems fiy
application of hromformatics as the cx.mnmurflnl techmque;
raphy are ime consuming The lum[‘u-nu-m.:l issue 1s how can “-_;_: predict
: amino acud sequence I'his chapter butlds on the discussion
I visualization discussed in Chapter 10. You will leam
amino acid sequence,

Protein Structure Prediction (PSP) trom
reseirchers. This s a verd uselul
hke N-riy crystallog
the 3-1 shape of a protem from s
on protemn structure, classification anc

how to predict protein structure and function hased on the

The Protein Folding Problem

According 1o the Alfinsen’s hypothesis, the 3-D structure of a protein is determined solely by
the amino-acid sequence information. The experimental support for this hypothesis was
garncrcd as follows. Denaturants such as urea were added to the system of proteins that are
hlldlcd in the natve conformation. Denaturants destroy the tertiary -str.'ucturc so that the ['ll'ﬂh‘tiﬂs
are in the r.-mldmn coil state. After removal of the denaturants the proteins spontancously fold
|.111L‘]‘\ into their -nuli\'c conformation. This is an in vitro experiment whcrtl: [‘hc.rc is no ;‘.:cllulilf
cvommen, The Lk oty el snsroment and he capabilng of th o
POntneaL DACK Into ats native conformation suggest that the i . . hin the
dunluumd sequence 1s enough for protein to fold jtse g 81 the snformation: Wi
contormation of the protein corresponds 10 the ,]I :,'Ilr' The results also suggest that the native
; rh”, Strong argument against the Alf !:“ ; “minimum state of the free energy.
Lm'”!”m_] S paradox can be un:.lcrﬂmud as A 'f'-l}'pulh::m_s. is the Levinthal's P“mdm'
protein is determined by the dihedra] . lollows. The 3-D structure of the main chain of 3
:ntr:l;nc'lmm are considered, these dihcdrqiuﬁlc;“ ¢ and ¥ (where w is 180°). If only loc
f_};n{_\};;“"d" l"flmmn of lhe.lurSiun cnuré},g;h have a few Pfc_ﬁ:rred values that correspo?
X r only about 10 conformatjons round each rotation bond. We may have [0
ave to examine as many as 10V oo 2N aMino acid. However this implies that W¢
onformations for However this implies tha
protein with N amino acids. For?
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M e L-“|11|Hl|[-*j“"."“‘| 'i'f“_“'}"l}' ol protein folding is classified u an NP
Lablem 13 NI _“m.m el |.t means 1lm! @particular solution cun be he
ive the whole problem requires an exponential time e

a nondeternumsuie polynomial time solution, This m::*mn that the solution ¢
hin polynomial time. As the expanential function iril ;Im p:;p o 0 St oan b
o alid much more rapid rate than g polynomial,
'|']u,-n: have been some thoughts on the re

-complete problem.
cked in polynomial
algorithim. A problem s in

:||T||.

-h;'CL‘-"I wil

-complete problem
these problems are intractable,

e : : : . '
solwtion of Levinthal's paradox. These are

~.um[11;lrizml helow:

| The theoretical models used 1o prove hardness are not what nature is trying to
optimize. f

_ Evolution may have selected proteins which fold easily.

~ proteins may well fold in locally, not globally optimal ways.

R ]

To summarize, it is difficult to predict structure from sequence. However, from the

srowing database of experimentally determined protein structures, some heuristics are

emerging:
|. The number of unique protein folds is quite limited.
> There are many proteins with the same fold, but no similarity of sequence.
3. *Neutral' mutations altering the protein structure are likely.

112 PROTEIN IDENTIFICATION AND
CHARACTERIZATION

tification and characterization are available at ExPASY
auon dii L in

these tools can be identified as unknnw.n protein '!sululed
Another set of these ols can help in predicting the

- Many of the tools for protein iden
- (http:/iwww.expasy.org/). Some of
through 2-D gel electrophoresis. ‘
physical properties of known proteins.

Some of the ExPASy tools and other tools o

re discussed as follows:

AACompldent

ant tool to identify a protein

/) is an import i

AAC ; ols/ g
ompldent (htlp.ﬂus.cxl'lﬂsl’-“rg,m acid composilio

P ils aming acid composition. It uses the amino
ldemify kKnown proteins of the same composiion.
As the input 1o AACompldent, you need (o give T
. Amino acid composition of the protein 10 ulcntll_':é it |
2. A name for this protein, so that you cin EERghis

3. The pl and Mw of that protein (if known).

give the following information:

ater in the results.



m_f‘mh'm Strncture Prediction \
or aroup of species for which you would like to Perﬁlﬂ‘m the 5
You may also i'-Ll-“ specity ALL for all S‘WSS"PRQT”‘rEMBL El‘![nes. th
< o cenn in SWISS-PROT only: the key‘wur(.i for which you \.?,r()u[d- like 1o et
5. [_T'f:]-l:lclwmpic: ZINC-FINGER). This will produce the list of protejng m
:I{;;:[LL;“""“'J“”I‘ You may also just specify A.LI‘ for z}ll SWISS-pROT entries.
6. Amino acid composition ol a known pr.mem..ﬂl?tumed in the Same run as the
acid composition of the unknown protein. This is for calibration. If you g s
o calibration protein, leave NULL.
The SWISS-PROT identifier (ID) of the calibration protein {'-‘Xampxc.

ALBU HUMAN). '
§  Your e-mail address to get the search results mailed to you.

4. The :-.[IL‘L'iL‘S-

t
mﬂ'—‘fhing
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1 h&‘n‘g

|

SWISS-PROT and TrEMBL are indexed into 6 constellations (groupings),
AACompSim (http://us.cxpasy.org/tools/aacsim/) is a variant of AACompldent, j
used to compare the amino acid composition of a SWISS-PROT entry with all other entrie;

Tagldent, Peptldent and Multildent

Tagldent (http://us.expasy.org/tools/tagident.html) is a tool which allows the following:

I. The generation of a list of proteins close to a given pl and Mw.

2. The identification of proteins by matching a short sequence tag of up to 6 amino
acids against proteins in the SWISS-PROT/TrEMBL databases close to a given pl
and Mw,

3. The identification of proteins by their mass, if this mass has been determined by
mass spectrometric techniques.

Peptldent (http://us.expasy.org/tools/peptident.html) is used to identify proteins wib
peptide mass fingerprinting data, pl and Mw. Experimentally measured, user-specified
peptide masses are compared with the theoretical peptides calculated for all proteins
SWISS-PROT, making extensive use of database annotations. :

Mq]llldef‘l (http://us.expasy.org/tools/multiident/) is a tool that allows the identifical®
of proteins using pl, MW, amino acid composition, sequence tag and peptide mass finge”

prinli.:g data. One or more species and a SWISS-PROT keyword can also be specified for
search,

PROPSEARCH

. PROPSEARCH (http: infobi i
search.html) is u{muﬂ:’g:l“:;:nfuhlof.ud.umvmumpl.l‘rfSERVEURfPROPSEARCHfEon
ge B PROE putative protein family if querying a new sequence 135 "y,
5, nI:SIE ]'CH Uses the amino acid composition as the inth:f""”
o d:’:;‘dl‘._\m-_lgllt, content of bulky residues, comcql © ups
€ HELIUEHL'E’:]S Wc‘]llgtligurgc and the ¢ontent of selected dipept'df- 4
The weights have per  o! Properties are weighed individually o
ctic algorihy €en trained on a set of protein families Wi 4
* S€quences in the database are transformed int0 ¥

Ty vector,
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Figure 11.1 15 an excerpt from the PROPSEARCH output
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! bilar felca 7.82 l98 1 1358
- 10.51 -
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G-Protein Coupled Receptor hOT7TI75. Melastin has a very high IMportance ;oM |
research. One endogenous mechanism for cell proliferation involves the P"‘duqm cang:
i i which has been shown 1-.1+5uppn:'bs nu:‘l.uslusis of humgp, frop o
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I:H'm.'q.'\\cd o a g . -
Metastin is similar to a number ol Beta-3 adrenergic receptors i roPlide |
Tld'l{:med A

Metastin.
Figure 11.1.

PepSea
PepSea (http://195.41.108.38/PepSealntro.html) is a tool for protein idfemiru:a“u b
Nk

peptide mapping or peptide se

database by:
¢/ A list of peptide masses

¢+ A pepuide sequence tag
-4 Sequence only

PepMAPPER, Mascot and PeptideSearch

These are various peptide mass fingerprinting tools.

PepMAPPER (http://wolf.bms.umist.ac.uk/mapper/) takes peptide mass as the key

input as shown in the screen shot in Figure 11.2.

PepMAPPER
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peptide parameters
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quencing. You can search the non-redundant protein sequ :
Chep
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List of peptide masses

¢
¢ Peptide sequence tag—what is a sequence tag? .
¢ Amino acid sequence

FindPept

FindPepl {lltlp:ﬁm.uxIJHS}'.urg/luulm’l’indpcpl.htmI} is an ExPASy tool. It can be used to

dentify peptides_that result from unspecific cleavage of proteins from their experimental
nasses. FindPept takes into account artifactual chemical —Gdilications, postranslational
sodifications (PTM) and proteasc autolytic cleavage. Experimentally measured peptide

nasses are compared with the theoretical peptides calculated from a specified SWISS-PROT
ntry or from & user-entered sequence.

Predicting Transmembrane Helices
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sredict membrane-spaniing regions and their orientation. The algorithm ig base :,,'
I which is a database of naturally occurring transmeps.
103,

atistical analysis of TMbase, win B i | wei )
proteins. The prediction is made using a combination of severa weight-matrices for ., -
The output of TMPRED is in three parts. First 1s the listing of the p,,

transmembrane helices. The listing gives both inside-to-outside and outside-iq.j,, .
orientations. Only scores above 500 are considered significant. The second part is the [21.
of correspondences. This shows that which of the inside -> outside helices COITESPGEdI-'::
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orientation and a “++" symbol indicates a strong pl’e!’erence S IS RN SFL mirdp;;
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multiple sequenee
TAHINNM chttp
transmembrane helices

speculates on the suggested model for the transmembrane topology.
For Metastin (SWISS-PROT ID: Q969F8), there are two models suggested &
TMPRED—one with 7 strong transmembrane helices and the second with 6. The outpu

TMPRED in z graphical form is shown in Figure 11.3.

TMpred output for Q969F8
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FIGURE 113 TMPRED output.
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Jhosen enzyime ant - - |
ll|liir::;:::|':-:h;;l'lil'|[ and mass values for the proteins of iHICrcSEcp!Id"‘

xe can return the nss of peptides known to CarTy posyp,,

e ‘ L) = I AlN # T - l!"
. hiehlight peptides whose masses may be affected by datahy,
] = [ >

chet
removal ol a signi

. g i T e,
|1,_.!1m]1_- \% HES Wiy

prolein sequences -III'HI o

protein sequence \"-'IIIII i

Also returns theoretic
If desired. PeptideM

lational modifications, and ¢ ‘

conflicts, isoforms or splicing vartnis.

SAPS ;hup:ﬁwwu'.isreu.ish-sih.f:h:‘suﬂwnrcfSAl’S_l'nrm.l:lml}

. R 3 L ERrp v 1% -." 0Oev ’ = .
Statistical Analysis of Protein Sequences (SAPS) is a tool 1 aluate a wide variety o

protein sequence properties by using statistical criteria. ‘ _ |
The output usually runs in several pages and is organized in the following sections:

¢ File name

¢ Sequence printout

¢ Compositional analysis

¢ Charge distributional analysis (charge clusters: high scoring (un)charged segments;
charge runs and patterns)

¢ Distribution of other amino acid types (high scoring hydrophobic and
transmembrane segments; cysteine spacings)

¢ Repetitive structures (in the amino acid alphabet and in a 1l-letter reduced
alphabet)

¢ hiu?llp_le.lﬁ (cuums_. spacings, and clusters in the amino acid and charge alphabets)

¢ Periodicity analysis

¢ Spacing analysis

The output for ALBN_ HUMAN in Sw

- €xcerpts): Iss-prot notation is as follows (only the initial

=40

o —

Protein | (File: Wwwimp/.SAPS. 7177 445.seq)

SWISS-PROT ANNOTATION:
ID sp|P(J2?68]ALBU_HUMAN
DE sp]P{lE?()H]ALH[J,JIUMAN

bases, DOES4FE4 checksum. (ALB)Serum

: 6
albumin precursor.[Homo sapiensk

number of residues: 609; molecular weight: 69,4 kg I
: 69, a

I MKWVTFISLL FLFSSAYSRG vE
~ FR ¢
61 EDHVKLVNEV TEFAKTCVAD EqﬁEAHhSE va
121 ERNECFLQHK DDNPNLPRLV RpPEV]
.,

HRFKDLGE ENFKALVLIAFAQYLQQCFF
3535}“4 "TLFGDKLCT VATLRETYGE MADCCAKQE!
FHDNEETFLK KYLYEIARRH PYFYA

e
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rmary Strucyyy,

J/I# oy bt W ECCOAADKAA 1 Ik Af"”t‘ih aand Predie e
H ORI PRA FEAEVSKLYY I)I.I'!'::\'Ill-ll':lgl-‘{{ DEGKASSAKQ 11 geay
N i L ER SHOIAEVEND EMPAD| gy CHGDLLECAD, RADI :u.l.'_t”‘" GERATKAWAY
i -I Ay L LREAKTYETT I.I-Ht'(-. WA ADEVESK DV KNYAS ‘Frlt I NODSISSKLE
RILFONA LLYRYTKKVE Ovs MADE HECY ARVELE g i OMELYEYAR
|ak\}s'-\‘ .'F’ L s .'-u'_'-llu' » Tk
LV LHEK TPVSDRVTRC (“I'l-'t;l|E !'_’”-'*-’ SRNLGEVGS K t.(.},ll:"_'"'] N LIKONCELFY
1 LN O TALVELVKHK PRaTirn R CESALEVDET yypg A ICARDYLSVY
;4 et R ERQIRRY e ATKEQLKA VM“]”:;\’.‘I‘:\"- b 'F:l".I-Na'\i__.I FTEHADICTL
| AASQ vAl Gl - KCCKADDEE] CPFALEGEKLY
1arilil
protPard

Jica.expasy.org/tools s .
_ param (AP [leae l % g/to is/protparam.html) s
ot L arious physical, and chemical parameters
s L ) .
ot TrEMBL or for a user entered sequence.,

a4 tool, which allows the comput-
for a given protein stored in SWISS-

&

\PS (Statistical Analysis of Protein Sequences)

L
v

§APS [htll":”""‘w“'iﬁrcc'is"'Sih‘ch"'sn““'“reo"sAps_fﬂrm.hlml] is a program that provides
:.‘ii;.‘IN‘-':: aatistical information for any given sequence. The output is organized in the
following wections: file name, sequence printout, compositional analysis, charge distributional
nalvsis (charge clusters; high scoring (un)charged segments; charge runs and patterns),
\il‘-[T‘mU““'] of other amino acid types (high scoring hydrophobic and transmembrane
coments; cystemne spacings), repetitive structures (in the amino acid alphabet and in a
1L:lsttcr reduced alphabet), multiplets (counts, spacings, and clusters in the amino acid and
charge alphabets). periodicity analysis, spacing analysis. The output is several pages long.

Predicting Protein Hydrophobicity

It has been hypothesized that if the segments of secnndary strycture could be accurately
predicted. the 3-D structure could be predicted by simply trying different urrangcmenls_nf_ the
segments in space. One criterion for assessing each arra“ge"f"ﬂm Fould hete s Er?d'c‘fgﬂs
of residue solvent accessibility. The principal goal is 10 predict the extent t‘o ~w'}t1,|'c1:‘ .1 ;‘: hz
“Mbedded in a protein structure is accessible to solvent. -SG']VC[H‘:IFLE!;E.E'I hl' !In} o e
Gescribed in several ways. The simplest is a two-state description dlsfmdglélzl;:liic ent
“idues that are buried (relative solvent accessibility «:1‘6"5’:1_) “T'fj cxpfi*?en eirthf:r = 1-hc s
au;-:ewihi!ity 16%). The classical method to predict accessibility is 10 assIg

: o : neural network
ates, buried of exposed'l according to residue hydrophobicity. HOWENSE: £

i i accessibility
g using PHDacc [http:waw.embl-heidclberg.delpredlctprntmnf) of ac
| hydrophnhicity analyses.

 deen shown 1o be s i impl

e e superior to simpie 7 ; -

" ProtScale (hup:Hca_cxpﬂsy,nrgjcgi-hlnfprolSCJ}t?.?!)fc;;::ws:
"0-phobicity. For example, the outpul for Q969F8 1s as

be used 1O calculate the



lgl Protetn S mre Prrediction
le scale, the individual values for the 20 amine -
Doolittle scaie, Gt ",
. _3.500 Asp: —3.500 Cys: 2, n: -3.500 ,
. 200 Ile: 4.500 Leu: 3.800 Lys: =3.900
Ser: —0.800 Thr: =0.700 Trp: -0.900
Ix: =3.500 Xaa: —0.490

Using the Kyte &
‘ 4 3000 AsI

0400 His: =3

: _ ]
Y 800 Pro: ~1.60( 1
y x: =3.500 G

cal form is given in Figure 11.4.

Ala | s ;q\l'l_".
Glu: =3.500 Gly:
Met: 1.900 Phet .
Tyr: —1.300 Val: 4.200 As
ale output in graphi

Protscale output for Q969F8

T I T
; ;———r—" Hphob./Kyte and Doolittle —
F |

fL] ! L j N
LI J‘AM A H‘ f,
J L

The ProtSc

[ 3% ]
-
--?_:

Score
=
-—-é
—

— |
—
b
=

50 100 150 200 25
0
Position 300 350

FIGURE 11.4 ProtScale output.

You can use dfﬂWhCﬂ (ht l] i sny Jussicu 'I'”ICIUIIEH-'I" m h[“] 0 dla
: t :f!sm - i i
{”ydrﬂphﬂhlc C]USIEI’ AHHIySiS} p]{}[ 0; d pl"(]ten: 'it;quence . l) l |
L -

PEST and PESTfing

Proteins wiih_j

. 5 -Intracellular hajf.y;

th proline, glutamic aci h?‘.‘_f'}_\’?s of less than ¢ " ich
amic acid, serjpe 7o~ Wo hours are found to contain regions ¢

N¢ and threg
nine
¢ . E S and T). These are called P

regions and are generall
¥ flanked .
PEST {http:ﬂwww.icnet.ukflbalc:ll‘umrs o rsiively charged amino acids

4 submitted probe yus;j Wpro
jec - - i
hpdrophobiiy e :Lllﬂr:;i ar fraction lgfrpflf;np:dzmg‘.es possible PEST mgmgsd:c
on. + £, § and T components, an
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s frivde [t
Pl i yotem conbiuns o 'Y ; 15 used 1o
Lhether d 1 o o 'V PEST repiom o computer progeam The alpori
N AU AR AR 5 . " , e
i et 1 LT RLAR R AT tetches ol armnee el Freater ih: I
| . e g m|:|;|| tey 12

S h remons continn at least one P LS .
ne Poone B oor D oand one S or ] They are
L -

ane UKD T mnul .il{l o astidine (1) residues, but positively charged residue
Athan the PEST sequence, ' : Ics

1 e
|

s paircoil and Multicoil
L

plw w.choembnetorg/soltware/COILS _Tormuhtml) s o progrinn that compares
‘ o 4 database of known parallel two-stranded coiled-conls Tmd derives a similarty
COmpanng this score to the distnibution ol scores in globular and cotled-coil

am then caleulates the probability that the sequence will adopt a coiled-

1ia L

ALt
s, Hhe PrOg!
1 4

b

" armahien
'll.llfh-...: 'hil|::HnighIiugulu.lcs.mit.t-tlufcgi-hin!smru} predicts the location of coiled-
s i amino acid sequences.

\uliCorl - program (http://nightingale.les.mit.edu/cgi-bin/multicoil) predicts  the
cotl regions in amino acid sequences and classifies the predictions as

1on ol LUIIL'{J'
nc or inmeric. The method is based on the PairCoil algorithm,

4 SECONDARY STRUCTURE ANALYSIS AND
PREDICTION

e are several protein secondary structure prediction methods and the most important of

<« methods are

4T hou-Fasman method
+ GOR methods

¢ Nearest neighbour methods

¢ Hidden Markov models

¢ Neural networks

* Multiple alignments based self-optimization method

hou-Fasman Method

cecondary structure _is one of the

thod of secondary structure
and then applying an

::_::I:u;:::;,un:u1 :llgur‘ilh‘m for the pTCI:IEC[ifI]]:ﬂ[_prJI:I:iII !
eddicn, ely used predictive methods. The _(,I_mu-F:lhm:.m n‘u, st
POnhy prediction ?'E‘llllt:h o a thI-I.I L

-“" 0 the conformational parameters and positional frequencies,
-i;mm“frf”“"“”llillinlmul parameters for c:IL‘.h :llminn m:it.l wgrc ll..‘.il‘lt.:llh‘lrl.::
COndyy tquency of a piven amino acid WI.I]Hll a protein, 1t..~ (Hil.:l:l'[t. g e
nr;:rnc,uf\‘*’!ruclurc, and the fraction of residues m._'curnng in tha _:rl[li" i i

are measures of a given amino acid's preference O be foun

M depends on assigning a set of
| by considering the
in a given 1ype of
ucture. These
heet or coil.



1 Nt Prredichion \
preference parameters for the 20 aminc

) acids f
or @y,
g,

y PN P(turn) arc the
A respectively. ”
' ollows: |

o all of the residues in the pu;_ﬂidr: _lhc appropriate set ﬂm- Parameter
| Assign all septide and idently regrons where 4 out of 6 C“ﬂliguﬁm N
" That region is declared an alpha-helix. Exteng the h“s'_da.-:_
of four contiguous residues that have ("-.lh, :

Pl a-helix) <100 18 ;-L-uch::L.!. That 1s th-u]a;cdj'lldeuf:‘:ltfr::; llflllu lltrfllx. If the , ‘:;r
defined by this procedure is longer than < '"‘-["1 Ld y '-fﬂ‘;]ﬂ]r{ige P{&-heli;,;
l’gﬁ-alwcl; for that segment, the HE;_.'[T:IGI'.I[ can J'L a:-.:\l:gm,. .ﬂS a helix.

Lot this procedure to locate all of the helilmil regions in the Sequence,
3, Repeat this | and identify a region where 3 out of 5 of the resiq,
) .

o rough the peptide gion
g s ) () >1.00. That region is declared as a beta-sheey,

have a value of P(/Fshee " s , . ) Ellfn.;'
the sheet in both directions until @ set of four contiguous residues tha have ,,

average P(fsheet) <1.00 is reached. Thul is declm:e‘d [hltlf end u]“ the beta-shee; Ang
seament of the region located by this procedure is assigned as a beta-sheey i e
average P(/Fsheet) >105 and the average Pfﬁ'-‘?’hfe” > P(achelix) for that region
_ Any region containing overlapping alpha-helical and beta-sheet assignmens arg
taken to be helical if the average P(a-helix) > P(fsheet) for that region. It js 5 bes
sheet if the average P(fsheet) > P(a-helix) for that region.
6. To identify a bend at residue number j, calculate the following value;

p=fNj+ DSfj+2)f(j+3)

where the f(j + 1) value for the j + | residue is used, the f(j + 2) value for the
J + 2 residue is used and the f(j + 3) value for the j + 3 residue is used.

I'I if
frstrand and =
I'he aleorithny s as

Sean through the
(-helin) > 1.0U.

12

have P

both directions until a set

The main helix forming residues H are ala, glu, ley and met. The main helix breaking
residues B are proline and glycine. == TR '

The main beta sheet forming residues H are ile, val. and tyr. The main bera shee!
breaking residues B are pro, asp, and glu. Proline’s unique structure in which the side chain
1s cyclically attached to the backbone gives it unique structural properties. It cannot assume
the backbone dihedral angles typical of alpha and beta structures, nor can it form appn:l']JI'ialle
hydrogen bonds.
o-qi['lxn thﬁ Chcf-u and Fasman method, the central positions of the turn (i + | and i+’
ok mmrolﬁ prefferf:nccs for pro (30%), ser (14%), lys, asp, arg, and thr (the later

g ~cach) at the first position, and asn (19% | ’ j 13%).

5 . ’ el 2 ), '), SEI'{ s
cys {IPE%J and tyr (11%) at the second i (19%), gly (19%), asp (18%)
eptideStructure (http:/fwww = '
_listhtml) uses the i ﬂ s {;L mj[.:a:ccelr) s.cnmr’pmﬂuctsfgcg_wiscunsin_packagdl’rogram
asman as well as a modification of the original method

GOR (Garnier, Osguthorpe and Robson) Method

GOR is a method that
é assumes that am;j :
secondary structu .o acids up 1o 8 i ide influenc
y s re of the centra] residue. This P I‘f_.'sldues on .each side mﬂ..
accuracy of GOR when checked 3 > Program is now in its fourth version:

This implies that 64% of the aminﬁd.mfl 4 3¢l of 267 proteins of known structure iS r

d
cids were correctly predicted as being helix, sheet ¢

& the




Secondary Struciure Analvsis and Prediction

—

.-"'_F._'-._
e

- e e eliel : . " 2
Algorithm uses sliding window of 17 amino acids. All possible pairs of amino

g e
Wi

« window are cheeked for their

imformation content as to predicting the structure

T th )

v [ e P - ; -
I sentral suminge acid by comparmg them o u set of 266 other proteins of known
;olne P ke e ¥ B Es . - ;

o If,lm- I'he rmihﬂ_ﬂ works better for helix than for sheet. because sheet is dependent on
i mteractions between non-adjacent sequence fragments. GOR underpredicts the

e

ongt L arands and usually you can predict 36.5% of the b strands correctly.

qumbeT ! IV chittp://mpsa-phil.ibep.fr/e

L,’[]“ | j ;
JlI possible pair Irequenci
gses ¢
-'HL"\ IIII-'L‘

gi-bin/npsa_a utomat.pl?page=npsa_gord.html)

es within a window of 17 amino acid residues. One output

wequence and the predicted secondary structure in rows, H = helix. E = extended or

" srand and € = cotl. The other output gives the probability values for each secondary
ol

spructy
{onsl

re at cach amino acid position,

der the following protein sequence (SWISS-PROT ID: Q969F8):

MHTVATSGPNASWGAPANASGCPGCGANASDGPVPSPRAVDAWLVPLFFAAL
,;LIL_I.GL‘.'(ENSLVI YVICRHKPMRTVTNFYIANLAATDVTFLLCCVPFTALLYPLPG
WVLGDFMCKFVNYIQQVSVQATCATLTAMSVDRWYVTVFPLRALHRRTPRLAL
\WSLSIWVGSAAVSAPVLALHRLSPGPRAYCSEAFPSRALERAFALYNLLALYLL
LILATCACYAAMLRHLGRVAVRPAPA DSALQGQVLAERAGAVRAKVSRLVAA
VLLFAACWGPIQLFLVLQALGPAGSWHPRSYAAYALKTWAHCMSYSNSALNP
LYAFLGSHFRQAFRRVCPCAPRRPRRPRRPGPSDPAAPHAELHRLGSHPAPARA

KPGSSGLAARGLCVLGEDNAPL
The first part of the GOR 1V output is as in Figure 11.5.

-~
10 z0 30 10 50 60 70
| [ [ [ [ I |
RETVATEGFNASUGAP ANASGCPGCGANASLGPVPEPRAVD AULVPLF FAALMLLGLYGNSLY 1YV ICEH
hhhh hhkhhhhhhhbhh seponge
FF FTUTNF Y LANLAATDY TP LLCCYPFTALLYPLPGUVLGDF RCKFVNY IOOVSVOATCATLTARSVDR
=er hhhh ecéage L1 EEgdnge gmEpsp (-] -
W FFLRALERR TPPLALAVSLS INVGSAAVSAPVLALHRLSPGPRAYCSEAFPSRALERAF ALYNLL
==een  hhhhh  hhhhhhhhhhhb hhhhbkkh hhhhhhhhhhbhbhb
A-YLLFLLATCACTAAMLPHLGRVAVRPAPADSALOGQVLAEPAGAVRARVSPLVAAVVLLF AACUGR IO
KEERhLERE hhhhhhhhhh Ee hhbhhhhkhhhhbhhhhhhhhhhhEhhhhhhE hh
VL AL P AGSVRP P YAAYAL KTVAHC RS YSNSALNPLLYAFLGSHF PQAFRRVCPCAPERPREPPR
bhhhhhnn hhhhhhbhh @ ereses hhthhh = eespnepgasz-
PEPSDFALPHAELHELGEZHP AP ARAOKPGSSGLAARGLCVLGEDNAPL
hhhhhhk eaes an
Sequance lengeh @ 398
GORq
:lam helix (Kh) 136 13 J4.67%
Yin helix (Gg) 3 0 1= 0.00%
Fi helgy (11) 0 1a 0.00%
era brigge (Bb) 0 1= 0.00%
:::.er-.dea 2crand (Ee) : £0 i=  15,08%
hﬂl turnp (Te) 0 i= 0.00%
h{"’ tegion () 3 0 13 0.00%
fidom coy | () : 200 1= 50.25%
mh‘ﬂm tatex (7) 0 1= 0.00%
°f 3tares : 0 1s  0.0D%
Li Li T L) ¥
i e il T RS W it W o i
popy w00 H'IF:T.Jln E’qu R I Ble ey B
CARTOE W T ORI R M g OB 6
L i 1 A ]
T 170 ze0 250 300 350 -
p )

: FIC1 DR 11 2

M Tar




m ety NrcTure Predicnon

Nearest Neighbour Method

hbour method is based on the hypothesis that shon h{"m‘[“gnug
ive the same \l:L.‘ni"l(iilI‘}. structure tendencies. A lisg of shor
by sliding a window of lcnglh n along a set F“‘.“pp"”‘imulcj._. s]tu e,
iraining sequences of known ~.lru|:turc. hEll minimal .-‘c:quuncrl: similarity, For ‘-:lal'n}]#l
SL\‘!}IY{LJ{] 1 |"[p;{}npsu-phil.iIrcp.fr&-w-hnn!_npsu_autumul.pl!pagf::npsahsimpagﬁ'i‘le t
one of the implementations of this method. n Is 13 :u?d Ihcrg are 300 proteins. The F.ccnnufl
ctructure of the central amino acid in cach traiming window is recorded and a shiding wjp, °
of the same size 1s then selected from the QuUErY "’U‘J“‘-'T'CC- &

The sequence in the window at each position of the query sequence is compareg |
each of the above training fragments and the 50 best malching fragrpcnts are identjfi,,
tiple sequence alignments, etc. may be used at "”? step. In SIMP4y
arisons are made with the secondary structure assignments of Kabg
and Sander from X-ray data and an empirically determined 5in}jlari_t}'_ matrix which assign; ,
sequence similarity score between any two sequences of 7 rcud:._:c:”m‘]cr_lglh.' o

The frequencies of the known secondary sm!cture of the l’ll'ld. e amino acid in cat‘:h of
these matching fragments are then used to predict the secondary structure of the middl:

amino acid in the query window.
Figure 11.6 the output of SIMP

earlier.

['he Nearest neig
of amino acids hi

®
LT14

o

fracments 1s made

Scoring matrices. mul
implementation. comp

AY6 for the same protein sequence used with GOR:

10 20 0 40 £0 0 ?r'j
| | |
: ocran AHI..I',I'-JP‘JFSPF1‘«‘1‘&H'L'UFLTP'ALL!!‘.L-SL"-I"G!HL'JIFJICFH
FFEie :.r.nt..r..‘.r.hr.HHHH!'!l:.r_.;t i ::-.-Ez[ie :
FFEFTVIHNFYIANL AATDVTITLLCCVPFTALLYFLPGVILGT !’HI:FSF'JITI-.'-T.'S‘-".' TCATLTARSVD
smas eEfLE= eee EEnMENHERRhHLAELE
mTu'rFl-.F.i.;_HFFTFﬁL.lLA'JELSI'I-"."GEL.I.".'ﬁl.F".'T...l.LH'F"..EFGPFATESIL!:ET?;:::;;i::::
[ = Ehhhrernzaet 414444 4 A HHHP
:::‘::.;EE:_:II:“‘I-TTL:;‘:;;'L.IIFUL'."FF.I.PLLIEJ.'.".-.‘-:’-':..I.!FI SAVEAFVEFLVALVYLLFLACVGPTIC
HEHnARRERnhnhHEHHEHR r.r.h.'.'.".l}!.'-lHnhhr.hHHnEHHHHHHr._‘zl':h.‘r.h hhH
I.IL'.I'LQLLSFI.SS\I’EFPET.I.A?I.LI‘ETU'.I.R-:HE‘E‘.?!-'EJ.LHFL.I.‘.'M'L-}S!!TF'JJ.FPFUCF;LPPFPF‘PFPF
MHRhFEHR EhhhhHHERRRLE khhhkhh hEhRHHEHN
POPSLPAAPEARLERLGIHPAF ARACKPGESGLAARGLOVLGEDNAFL

KERhER puferin

[ 3

feguence length @ ise

SJIEPADE
Llphs helix [} - LTI ] 160 13 40.10%
3,5 helix (e 0 is 0.00%
Pi helaix (I : 0 1is 0.00%
Esra bridge 1813 0 1= 0.00%
Extended =trand (E=) I 44 13 11.03%
Bera turn (Te) @ D iz 0.00%
Eend region fr=} 3 0 1s 0.00s
Fandom coil | el 194 12 48,.62n
Ambigous states (7] 3 0 12 0.00%
Other statens T 1 a3 0.25%

L .
E.P_'E
wag A 1
£

-

- amem -

| KN T TR Ej

. 7
FIGURE 11.6 Output from SIMPA96. Compare it with the oditput of GO‘K'“

o W

for
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Analvsis an Prediction _m

friseq

. ; * dna

" hat predicts the secondary Stiicure ¢ Ulﬂle?l’aces!nnssp-simple html) i

o2 oment approaches nmhlnmg the nearest neigh L L
Foaenet abiz™ i : ghbour a

idden vVarkov Models (HMMs)

(\fs have heen carlier discussed in Chapter 7. Thev

w Hhad - 5 . L‘ i ) L.

HMMS T o protein of a given structural clase (o o be used to predict the secondary
i CUre o . FI : ral class (e.e. @ + B as used in s
L= abiase +AC e B . e db Us n = 8
_[mm;unu:a uttj;l 1SES 1 lu IMM s trained with the sequences of the pr:}:L'“ntmmt:m
L Jass. The models are used wi ; eins in 1
,.-,m;!l"-” cid H Eu:-: “t.L [hin u“d,“"h 4 query sequence to predict both the class and 'l!?é
condary  StrW ¢ protemn. Pfam {hllp:f.‘www.snngcr.nc.uk!Snl’tw;:.reﬂ’fanﬂ
ﬁ,rfh--‘-*h"“" uses the HMM approach.
N

veural Networks

Most of the effective structure prediction models extract patterns from databases of known

cotein structures. Neural networks comprise a particular tool for pattern recognition and
cJassification.

The simplest layered feed-forward neural network consists of a layer of input units and

2 laver of output units. Signals are transmitted from input to output layer (feed-forward) via

he connections. In Figure 11.7, a simple neural network is shown. There are two input units
(J's) and one output unit,

Simple neural network: dynamic Simple neural network classification

Out = 0.5 (tanh (h) + 1) 1

O
|
h=1] i + ] INA B
i m 12102 g
0 e——T—T 1
2 0 2 0 !

FIGURE 11.7 A simple neural network example.

The value of each input unit (example: O for unit 1; 1 for unit 2) is m_ultiplicd -wilh
€ Strength of the connection; the products sum to a local field (h) reprcsentmg the signal
W arrives at the output unit. The multiplication represents a pr?]ectton of lhf:- !l'lput-.vecht}r
oo the vector of the connections. (2) The final output is determined by_applymg a hlgmm.d
funcion (shown is the hyperbolic tangent) to the local field. Th_f: result is that. the output is
Onstrained 1 values between 0 and 1. On the right hand side the potential of such a
ok Musiste. A T g o A a:‘lfi l'hﬂ d‘?'rlf m;z:;e:i;l sequence is translated
- ' ion. The
lintg eural networks can be used for protein precict P

, Aerns by shifting a window of 1 adjacent residues (typical values of n = 13-21)
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HNN (hllp:Hnpsu-phil.ihcp.frh:gi-hin!npsu_aulnmat.pl?pageznpsa_“n_hlm“ "
Hierarchical Neural Network based program that gives a secondary structure prediction, Th:
output of HNN for the above sequence (used for GORIV. above) is shown in Figure 1) g
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Put from HNN for the example protein sequence.
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ccondir) structure prediction (1 = helix, E = strand. — = no prediction)
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FIGURE 119  Output from nnPredict.

PSA (httpz//bmerc-www.bu.cdu/psa/request.htm) is also a secondary structure
stion tool. 1t has 3 opuons for analysis: Monomeric-Soluble Type-1 analysis, Minimal
S analysis, and WD-repeat WD-repeat analysis,

pSIPRED (http://bisinf.cs.ucl.ac.uk/psipred/) incorporates methods PSIPRED, Gen-
HREADER and MEMSAT 2 for predicting structural information about any given protein
rom 11> amino - acid sequence alone. PSIPRED is a secondary structure prediction method,
MEMSAT s a transmembrane topology prediction method and GenTHREADER is o new
sequence profile based fold recognition method. PSIPRED carries out secondary structure
prediction on protein incorporaling two feed-forward neural networks that perform an
analysis on output obtained from PSI-BLAST. Version 2.0 of PSIPRED includes a new
dlgorithm that averages the output from up to 4 separate neural networks in the prediction

process 1o further increase prediction accuracy.

ﬁ[;‘L![

PR Ay

Multiple Alignments Based Self-Optimization Method

- SOPMA {hltp:ﬂnpsn-phil.ilu:p.fr!cgi-him'n]lSﬂ-ﬂlllﬂmal-P”F“ﬂc:npm—mpm“'mmn is a
- secondary structure  prediction  program (Self—Optimizcd Prediction Method) that uses
. Multiple olignments. SOPMA correctly predicts 69.5% of amino acids for a three-state
f-'fl“cﬂ'?licnn of the secondary structure (alpha-helix, beta-sheet and coil) in a whole database
OMaining |26 chains of non-homologous (less than 25% identity) proteins. Joint prediction
"llh SOPMA and PHD correctly predicts 82.2% of residues for 74% of co-predicted amino
:m‘h' The output from SOPMA for the sequence used earlier is given in Figure 11.10.

=5 MOTIFS, PROFILES, PATTERNS AND FINGERPRINTS
SEARCH

Mot N H

5 X e s of sequencecquence comparison to e it seqsnee oL

~:."1mir- f""“”.‘r‘ comparisons. Use of motif-based mformal‘mn l'a.r C‘Ompm.'lt-ﬂ M.‘_f or family

£ Pa iy already associated with_structural and functional information. . lization of
180ns are also more sensitive because motifs represent higher-level generallzas

A Ca[u x al f
- —8 that are important for a given structural or functional feature.
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FIGURE 11.10 Output from SOPMA for the example protein sequence.,

Study of motifs involves pattern-recognition methods. There are three main pattem.
‘ecognition generalizations methods, using

¢ single motifs (use of regular expressions)
¢+ multiple motifs (use of fingerprints or blocks)
¢ full domain alignments (use of profiles or HMMs).

Each of these approaches has been used to develop a different type of reference
latabase (see Figure 11.11).

Use regular expressions (PROSITE)

Single motif methods T Full domain alignment
_'__r__-_ N method
— \ o Profiles
: o - _;l > (PROFILiLIBRARY}
] []
B n i e—— e ]
—_—
Multiple motir  Identity matrices (PRINTS) HM[IJMEH(IIE?am)

methods




/- ﬂwﬂffﬁc' prn
' ‘5

Irrﬂ“h'

18 already discussed,

: , A€ a4 numericy]
within the multiple se

jfiles

PPt

1!r:-'"”u
: "“"I.I i =1 T + 5

TSFT.M qmlanties between these sequences :
- [&
prav

i roteIns. Profiles are constructed b
Julek
rL[J

ting & protein family. A position-speci
I-L'].'r‘-'z;_ p-\\'[ or BLOSUM.
ines

profilescan (http://hits.isb-sib.ch/cgi-

qural and sequence motifs in protein s
SIrUCEE

 ifs in protein sequences, These motifs are
[TILtER

% ¥
files, Putterns and Fing

_———‘__.——-__‘—_-__._—‘__I——_

. representation
quence alignmeny of

s Ihe common characteristics of that particu

erprenty Seareh _m

equences. Profiles help
and analysis of distant
sequence alignment
1s constructed on the

bin/PFSCAN) uses a database of profiles to find
equences. Profiles

can finds structural and sequence

represented as profiles in a library. ProfileScan

: €. and displays all alignments between the profile and
equence that have a normalized score above a set threshold.
5

The output for the Metastin sequence used above is given in Figure 11.12. PFSCAN
found two motifs in the sequence.
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FIGURE 11.12 PFSCAN output for Metastin.
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e _--‘,.'h:uh;l'-l.‘-d;\f.L‘:- : . T . . g

AP Ih“'u aphtml s i multiple sequence editor used 1o creae Muljp,

gegmanui . : Preti [h|Ip:ff’hiulmsr:.dkfﬂfl.!"'ﬂ“““vpr““.\'-himl} 1S useupt
e ] 1enmenis Lot) e _ !

v...!lt.f LR = .1:11—””““”1"" , Lo

iple sequence
of a profile trom plyea

2 (CanstIEt smake.html).

= Jacomanual/ yrofilemiake. . ‘ _ ‘
Mhiobase.dh/gegmantiati | database of sequences with ProfileSearch (huty

" g 0

f the profile o

;1If’nrnﬁlumukc.html]I. i o B
alignments between cach sequence in the ProfileSearch outpy

List and the group of aligned sequences (rcprc‘_\;nlcdr[*;‘_::'slhi'“[;:tI;:‘:;?Ir;sensus} using
ProfileSegments |hlIP:fﬂ‘.riuh;m'.dkfi.’.fg.'..nlﬂlul.ll ljrn,l : ]g”_‘ : *t. r_ |
5.A _wﬂulc-\m]m:ncc can be searched with a I|h1‘m‘_\ ;3 differen L[;m iles using the
F'r:'rl'ii;'i‘iu;m program. ProfileGap thttp:ffhmimse.d gcgmanua P""“'Egap.hlmh
can be used to make optuimal ahgnments he:m:_cn one or more sequences ang ,
croup of aligned sequences rr:p:cscrlp::.? as a prluhlc | =
6. .]_Eind structural and sequence motifs 1in protemn :icquencc.s. using pmdemrﬂlined
parameters to determine significance by using Pmi_l[cSL‘iln.
Compare one or more sequences 1o a l!:ll;lh:lsc. w! profile HMMs {c,;_lg_] the Pfam
library. in order to identify known domains within the sequences using Hmmer.

Pfam {|-|[[p:ﬂbiuhﬂ!-:e.dMgcgn]ﬂnua|ﬂ]l’l!ﬂlt‘t’prﬂl’l1.htﬂ1]}. HmmerIndex (http:
biobase.dk/gcgmanual/hmmerindex.html) creates an index for a profile hidden
Markov model database so that profile HMMs can be retrieved from the database
with HmmerFetch (htip://biobase.dk/gecgmanual/lhmmerfetch.html).

Look for sequence motifs by searching through proteins for the patterns defined in
the PROSITE Dictionary of Protein Sites and Patterns using Motifs (http://biobase
Adk/gegmanual/motifs.html).

display mut Jignment with the program ProfileMake (h
! tpy

Comparison ¢
hiobase.dk/gegmant
Display ot the aptimal

fad

i

~J

All the above GCG programs are with Accelrys Inc. now. Accelrys is a wholly owned
subsidiary of Pharmacopeia Inc. The program listing can be found at http://www.accelrys
.com/products/geg_wisconsin_package/program_list.html.

Frar‘ne—PrnﬁTcScan (htlp:ﬁwu‘w.isrcc.ish-sih.l:hfsnftware}'PFRAMESCAN form.html)
:;e;;h;:u:ne-search caﬂﬁhililies of Pfscan to query the collection of Prosite prgﬁles with 2
g NA sequence. The six ing f : - codi
frameshifis it the DNA seque.llerifs I:;p;;i:r:,s of the DNA query are inspected; coding

Patterns

Patterns also represent th
S als . € common characteristj : . , ~ontain
any weighing information, ristics of a protein family, but it does not contd
Pratt (http://www.ebi -
a set of Pm[cir[: qequc;::;t‘?};uwpmm‘] allows the user to search for patterns conserved I°
‘ : - Ne user can specif i ' he
o i : : : ¥ what kind of ; be searc
o, ' many se : atterns should
Fafging ) '.n" i ees should match 4 pattern to be . d " tions for
pattern conservation, restrictions, number of 8t %ymhor rfe_:lpurtbt; —there are op
X S5, Hexible spacers, elc.
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'\:tl"f"" coft are/asset.html, can locate Pall&r:l;gLS(E'[‘]- at  http://bip.weizmann.ac.il/

g /= ":-- . R ., LOom nine r\l- l‘d . % ¢
oftwd catistical significance o . ; claled patterns and dde
e are qetually present. ormation that the
Ltie™?
I.1I
,\,lullfS

. defined by a heteroge ' -~ | |
b S Ll".“‘u.l I .hfﬂ_h‘m:“'“ﬁtﬁus collection of predictors, which currently include
oyl ESpresons. aeneralized profiles and HMMs
.f.uil , s ok ol ' . r l 1) _

o [mlp'”-mlh'lh!) Sl_h'thf]_lﬁ a database devoted to protein domains, also a collection

| : b o = <o o |

o tools for the mvestigation of the relationships between protein sequences and motifs
LJE‘ﬁ.'I'IhL'LI on them.
The tools for QUETYIHE and exploring the Hits database are as follows:

Query by protein produces a list of motifs present in one or several proteins,
Query by motif produces a list of proteins that contain one or several motifs.

~At least” query is another query by motif form that produces a list of proteins that
¢hare 4 minimal number of motifs.

4 Pattern search using a user-supplied regular expression to search protein databases.
5. Metamotif search looking for arrangements of motifs in protein databases.

Cd Vo ==

The output from Hits for the following list of proteins is given in Figure 1113,

Resmlr ~
» Monf count: 3
« Metif names. pef CYS_RICH, pfam PEP_M12B_PROPEF, pfam REPROLYSIN, prf ADAM_MEPRO,
prEDISINTEGRIN 2, pat ZINC_PROTEASE. pa:DIS]N']'EGRDI_‘I. pfam DISINTEGRIN
[ more sbouthese mants |

s Match connt @ 43

s Dlarches:
=w:DISI BOTCO a0 48 pn:MSI‘I‘ﬂ'EGRtH_I -
sw:pISI_BOTCO 1 92 pefiDISINTEGRIN 2 17.279
sw:DIST_BOTCO 6 38  prf:CYs_RICH 5,413
aw:DISI BOTCO 1 72 ptam: DISINTEGRIN 27.178
aw:DIST BOTAT 29 48 pac:DISINTEGRIN 1 -
swiDIST BOTAT 1 71 prLiDISINTEGRIN 2 r;i:;
aw:DIST_BOTAT [ a8 pefiCYS_RICH S0
sw:DIST BOTAT 1 71 ptem:DISINTIGRIN ’
sw:DISC TRIFL 32 51 pat:b‘[ﬂm‘t‘lﬂnm_‘l e
sw:DISC TRIFL 1 75 prf:DISINTEGRIN 2 $:0
aw:DISC_TRITL ) 1 prtiCY¥s _RICH 9,413
aw:DISC TRIFL q H pram: DISINTEGRIN 26.
aw:DI1SI_ AGKHA 29 as  paciDISINTEGRIN 1 o™
204 DIST_ AGKHA 1 71 prfiDISINTEGRINZ o
aw:DIST_AGKHA 6 jg  prf:CYS_FICH poALS
sv:DISI AGKEA 1 7 ptam:DISINTEGRIN 2 .
=';DIEFHTFIFL 27 46 pﬂt!DIsmEGFm__l Tenn
sw:DISF TRIFL 1 70 prf:DISINTEGRIN 2 9.“3

gl : CH :
H q 36 prf:C¥S_RI

::::ﬁ:‘_gi:t 1 70 pfam: LIS INTIGRIN 2*:-158-
9w:D1SI_CROVE 29 48  par:DISINTEGRIN i 9,
awiDTSI CROVE 1 72 pti:DISINTEGP-‘Iﬂ_S et
swiDIST CROVE (3 :: :;:;?;:'Enmamn A o
swiDIS]_CROVE 1 : DISINTE

FIGURE 11.13 Output from Hits.
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m Prorein Structure Prediction
sweDIST BOTCO, swe IS BOTAT, sw:DISC_TRIFL., sw:DISI_AGKHA,
sw:BOTR_BOTIA, sw:DISFE. TRIFL., sw:DISI_CROVE, sw:DISI_TRIFL,

' f IMA. sw:DISI_CROVL

W HRTE_CROAT, sw:DISA_ER
me/website/intro.html) stands for Multipje .
a group of related protein “Equc,;::i fr
Cy lr

eme.sdsc.ed u/me

MEME (http://m . i
overing motifs n

Motif elicitation. It is a ol for disc .
can take DNA sequences also as the input). N |
pmiliuu-dcpcndcnl letter-probability matrices thy, ”
¥ -' - - u |
<ihle letter at each position 1n the p: + sy
h possible lette p pattern. Iﬂdn—idu_,

MEME represents motifs as
to describe the probability of eac : :
uterns with variable-length gaps are split by ME'\;I
. ; E

: f . : 3
MEME motifs do not contain gaps. 1
into two or morc separate motifs.

MEME takes as input a group of
many motifs as requested. MEME uses statistic

i

protein sequences (the training set) and OUtpuye
al modeling techniques to ““‘“mmica;?

choose the best width and description for each motif. _
MEME works in tandem as a system with MAST (Motif Alignment and Search Tool,
The MEME/MAST system allows you 10 discover motifs in groups of related proy;,

sequences using MEME and then search sequence databases using motifs by utilizing MAsT

Meta-MEME {Ilttp:.’hnelameme.sdsc.uduf) combines motif models from MEME ipy,
ork for use in searching sequence databases. The inpy

hidden Markov model framew
Meta-MEME is a set of similar protein sequences, as well as a set of motif model;

discovered by MEME. Meta-MEME combines these models into a single, motif-baseg
hidden Markov model and uses this model to produce a multiple alignment of the original sx

of sequences and to search a sequence database for homologs.
Gibbs Motif Sampler {htlp:ﬁba)'csweh.wndswnrlh.org’gihbsfgibbs.html) allows you

to identify motifs in protein sequences (or DNA sequences). The objective is to take a given
nucleotide sequences) and determine common motif elements within

set of amino acids (or

them. One approach known as site sampling assumes that each sequence contains exactly
one motif element for each motif type. The alternative Bernoulli motif sampler assumes that
each sequence can contain zero or more motif elements of each motif type.

Blocks
he most highly conserved

Blocks are multiply aligned ungapped segments corresponding to t
e Blocks Database (http:!fblucks.fhcrc.nrg/blucksihe]pfhlncki_

regions of proteins. Th -
release.html) was constructed by the PROTOMAT system using the MOTIF algorithm. "
A Blocks Search (http://blocks.fherc.org/blocks/blocks_search.html) for Metas

sequence used before gives the output as follows:

Size = 398 Amino Acids

Blocks Searched = 11182
Done = 4738033

Alignments |
Cutoff combined expected value for hits = |
Cutoff block cxpected value for repeats/other = 1
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Other Programs

InterPro (http://www.ebi.ac.uk/interpro) provides an integrated view of the commonly g
sienature databases. and has an intuitive interface for text- and sequence-based searche
InterPro is distributed by anonvmous FTP and is accessible for interactive use via the Ep]
Web server. which can also be reached via each of the member databases. Where applicable,

InterPro also has cross-references to the BLOCKS database.
InterPro release 5.3 (November 2002) was built from the following participating

databases:

Pfam 7.7

PRINTS 33.0

PROSITE 17.25

ProDom 2001.3

SMART 3.4

TIGRFAMs 2.1

Current SWISS-PROT + TrEMBL daia.

Q‘O.‘.‘*

It contains 6725 entries, representing 1453 domain ili
: _ S, Te s, 5121 families, 136 ats, and 13
post-translational modification sites. Overall, there are 2932939 InterPro hit:c!l:',fﬂm 850953
SWISS-PROT + TrEMBL protein sequences, l

. 11.6 METHODS OF SEQUENCE.B
__ Rl i ASED PROTEIN

.:;_erf: are tw:a fundamemal approaches in using the sequence data for making pm!cin
ucture prediction. One of the approaches uses pattern i ttern
R hi d TR recognition methods. The p2
CC gnition approach Is use to_delect similarity between sequences. This gives indications

related structures & functions. | &
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Jgorithms ke homology modeling or threading can be used

Alignment and Database Search Methods

| The most common tools for a database search are BLAST (PSI-BLAST, BLASTP) and
~ FASTA. There are other tools also like MaxHom and SSEARCH.

MaxHom at PredictProtein server (htlp:h’www.emhl-hcidelhcrg.de!predictproteinf
predictprutcin.hlml) is a dynamic multiple sequence alignment programs that finds similar
sequences In a database. MaxHom builds up a protein family (defined as all closely related
proteins likely to have similar structures) in two steps:

e aligned consecutively (o the search sequence by a
method. After each sequence has been added 2

ign the next sequence.

[. In sweep 1, sequences ar
standard dynamic programming

profile is compiled, and used to al |
2. In sweep 2, after all sequences with significant homology have been picked from

the BLASTP output, the profile i« recompiled, and the dynamic ngramming
algorithm starts once again to align consecutively the sequences, this time using the

conservation profile as derived after completion of sweep 1.
You can use SSEARCH (http:Hn]:lSfl'PIT‘“-ih‘:P-r"""-"ugi'hi“"'“ps“—ﬂmmm“'pw[:"3‘2'3'1”r

| hPSM“PSH_Ssearch.html) to search PDB.

You can use Consensus 100! (hltp:ffwww.lmrk.cmhl-h

tnnscnsus.html) (0 calculate the consensus for the CLUSTAL or MsF n;]t'll
“n also use Consensus Secondary Structure prediction (http:/mpsa-phi=er
~tUlomat.pl? page=/NPSA/npsa seccons.html) that uses several protett pre
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he ExPASY web server, or from the program DeepView (Swiss Pdb-Viey,
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soes through the following five steps:
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SWISS-MODE]
Search for sutable templates

Check sequence wdentity with target
Create ProModll jobs

Generate models with ProModll

Enerev minimization with GromosY6

* * » > @

Remote Homology Modeling (Threading)

Protein threading is the method of ahgning a protein thllt‘nct: (the I:lrgc.t sequence) with g
protein sequence whose structure is known (the template protein). The alignment of the two
proteins is n such way that mapping residues of the target sequence onto a template
sequence according 10 the alignment gives an accurate model of the backbone structure of
the target. Threading is used for cases with <25% pair-wise sequence identity.

Threading algorithms use the database of known 3-D structures to classify new protein
sequences and to predict their structures. Their premise is that detection of structural
similarity by sequence-structure threading will recognize remote evolutionary relationships
that are not detectable by sequence comparison alone. This premise is logical as proteit
E\'O]LE[I.I‘CIH is known 1o strongly conserve the core structures of protein families. However, I 15
?i'i?;‘tfetr L.dr hﬂ.“: muc.h- Im,r-, rovement one should expect. The structures of remote homologs
. greatly in detail, with backbone root mean square residuals (RMS Iv in the range of
2-3 Angstroms, and the conformationg| ener -lq.l n:_5| ua's { ity .m Jgorithms
may rf;l}.:ily reject model structures wigh s ic{ii] i;lrcuri::rmns used by threading algo

€re are two basice - : crror. ,
model, A tied mOdelbl;l;:;Zda:)iD:::umﬁ 'fnr lhrca‘ding: Profile Method and Core threadin?
@ 1hepr[:2:c]-mc“-“m s also called Ih;hI;‘EDf];_r’Sm:C t[J;'rlf;rumming has .alsn been devel_np{'i;m
; s:mc,ﬂr:w[,;e:’}:“’“ Pra laﬂh“rﬂcthud. In this method, the .?tf::- .
€nvironmen; of cache tor E()I;::::E;n(.}r dlf!s(.rlpl.{)rs [h.a[ dcs-f.rl qurd
s fingerprint of the structd
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artially buried and exposed)

l e
i Slﬁi"-t‘m ;iL‘L‘L‘\SIhIIII} (3 states—huried P
. The degree of burial by polar or apolar woms

. each position can be categorized i '
Hence. € wch | i gorized o 18 environment ¢l

‘ + - . - -- - :'"‘k ‘Il :r 5 i i i
ference 1O 3 particular environment. For example Leu has e i i
- ol

ol o S N a preference for being
s s with a high fraction of buried side chain arca, whereas Asp has o very low h;"-mg -
o : preference

for that Im*«IIitm- A .prnﬁic ”1 the ;"—'“’ﬂl L‘“\’imﬂmc-ms that any one of the amino acids resides

. can be “l*'“'”"“'“"i_“"‘”‘5-1 ”)Bj A comparison can then be made betweer X c“

. onments and one of the 18 nlt:.ntmneal above. Computing a score for cath.mwim:ﬂn;ﬁ:ﬁ
class and each um)nn uufi can give the score table. You can then use a 2-D dynum?{;
ngmmning matrix .lu find -lhe hcsl' score between the amino acid sequences of the
qnknown to the descriptors of the environmental classes of a target structure. The profile
method fails when the structural profiles change from the template protein to the target,

The second model is called the core-threading model. 1t is based on the analysis of
pair-wise interactions between structurally adjacent residues in the protein. It uses the
branch-and bound method. The problem of this model is that it concentrates only on the core
regions and overlooks the loop regions that are also very important for some proteins.

©123-D+ (hltp:ﬂl23-D.nr:il'crf.gm'!l23-l]+.html) is a program which combines
! sequence profiles, secondary structure prediction, and contact capacity potentials to thread a
- prolein sequence through the set of structures.

LIBRA I (hllp:ﬂwwv.-.d{lhj.nig.uc.jpﬂ:tmlst-mnilﬂihraﬂJBRA_l.html}. abbreviation
for “Light Balance for Remote Analogous proteins” is another tool for threading.

TOPITS (hup:chhic.hinc.mlumhia.cdufprcdiclprnlcin) is a prediction-based
 threading program that finds remote structural homologues in the DSSP database.
Threader [htlp:ffhiuinf.cs.uci.nc.uk!threaderllhreader.hlml} is a program for
~ predicting protein tertiary structure by recognizing the correct fold from a library of
' alternatives. However, if a fold similar to the native fold of the protein being predicted is not
1 1n the library, then this approach will fail.
The third threading model is a recursive dynamic programming (RDP) method for
- protein threading which can overcome the above problem. RDP is based on the divide-and-
<onquer paradigm and maps the target onto the template in a step-wise fashion. RDP has
b““ implemented by ToPLign (http:Hcartan.gmd.defI‘nPLign.html).

:n\'ii’

1.7 AB INITIO APPROACH FOR PROTEIN PREDICTION

e

'-2?11?51 to the labcve methods, the goal of ab initio prediction is to build a model for 3
,lhegilcncc Wlﬂ.l{]uf using a template. Ab initio prediction relies on the lht?rmndynnmlc
hitio péediOf' protein folding (Alfinsen hypothesis discussed 1n an earlier sectmq}. The qb
B C‘:tm-n methods are based on the premise that the native structure of a protein
neral, | rresponds 1o its global free energy minimum state. Accordingly, the methods are
oY lormulated as optimizations.

€ methods for ab initio prediction are of the following:
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Monte Carlo (MC) Simlllﬂtinns

use forces but rather compare energie
S Via

Is that do not

iy 1 are method
hY [t cimulanons are I-llf.l.l -
habilities.

of Boltzmann pro

Genetic Algorithms (GA) Simulations
GA methods try 10 improve on the sampling and the convergence of MC approaches

Lattice Models

Japproximate fold representation (such as
L

ased on using a crude
or large amounts of conformational Spac

Lattice methods are b
and then exploring all

residues per lattice point)
given the crude representation.

The HMMSTR/I-sites/Rosella Prediction Server (hllp:ﬂwww.hiuinrn.rpi_edu;__h‘.m_:
hmmstr/server.php) predicts the tertiary structure of proteins from the sequence i
predicts local structure. expressed as backbone torsion angles, using a library of 5@::.'_

Carlo Fragment Insertion protein folding pmgj-::

structure motifs. ROSETTA is a Monte
HMMSTR, is HMM-based tool for local and secondary structure prediction, based on t

I-sites Library.

Petra (http://www-cryst.bioc.cam.a .
W mw . ikl - - .u - .
ilo messin sl redieion feUSd. c.uk/cgi-bin/cgiwrap/charlotte/pet.cgi) is an ¢

11.8 METHODS OF 2-D STRUCTURE PREDICTION

Predicting Inter-residue Contacts
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AGADIR (http://www.e -hei

AGAL !_ wan cmbl-heidelberg.de/Services/s :

i« an algorithm 1O predict the helical content of peptid s/serrano/agadir/agadir-start.html)
- plaes.

There are a number of tols to predi
[ ools to predict the post-translational modification of protei
oteins.

11.9 pROTEIN FUNCTION PREDICTION

Protein sequence determines protein struct i : : :
Jict protein structu Tl P cture determines protein function. We will first try to
pre "_-[ protein Siruc ure. Then use what we learned, both on the way to structure prediction
and from the predicted structure itself to predict function. Predicting protein function fmrr;
sequence adds two additional problems in comparison to the unsolved task of structure
prediction:

I, Function is not entirely determined by sequence, the environment is crucially

important.
5 “Protein function’ is a rather intuitive_but ill-defined term. Function is a complex

ssociated with many mutually overlapping levels: chemical,

phenomenon &
biochemical, cellular, physinlngical, organism mediated, and developmental.

, C.B- otein kinases can be related to

These levels are related in complex ways r
different cellular functions (such as cell cycle). and to 2 chemical function (transferase) plus
tion with other proteins.

a complex control mechanism by intera _
nerally involve atlempts to

Protein function prediction efforts £€ |
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11.10 PROTEIN PREDICTION FROM A DNA SEQUENCE

1 may have the need to predict the protein structure from a DNA

In the post-genome eri, yol
you lirst need to translate the protein sequence from the DNA

sequence. In such o casc.
sequence. The summary of such tools is given in Table 11.1.

TABLE 11.1 Protein Sequence Prediction from the DNA Sequence

Tool Deseription Address (URL)

Translate Translates a nucleotide http:Hus.cxpasy.urglloolsfdna.html
sequence 1o a protein sequence

—

Backtranslation  Translates a protein sequence htlp:waw.cntclechon.mmfengf
back 10 a nucleotide sequence  backtranslation.html

Transeq Translates nucleic acid hllp:ﬂww'.v.cbi.ac.ukfemboss!truns'-‘flf
sequences to the corresponding

peptide sequence
_—____'---'.-F

In this chapter, you have learnt protein structure prediction that is a very aseful
impartant nppllicnlinn in bioinformatics, If the amino acid ﬂeqtlenc:: uI: a protein is know™
one can predict the protein structure, its properties *md‘ functions |;th the situatio” IS
compounded due to protein folding problem. A r;ur‘11her of pru;c‘:in identification an




Review Questions m

Lqerization tools are available.
‘hrand helices, a spcciui class of

ortant for therapeutic interactions Altl
L 10

ar
apsine!

REVIEW QUESTIONS

{. What is Alfinsen’s hypothesis?

ansmembrane p ins are i : :
g "0 St ‘d 1 proteins are important in drug discovery process. What are their
propertics and how can we generate their 3-D structures?

3. What properties you are likely to use for primary structure prediction?

3 4 Discgss the neural network method for analysis and prediction of secondary
l proteins?

5. What are the steps in profile searching?

6. What are fingerprints and what are their applications?

~ 7. Explain the following:

(a) Motifs

(b) Patterns

i (c) Profiles

8. How can you predict protein sequence from DNA sequence?

9, Predict the function of the following protein from Methanobacterium

- thermoautotrophicum.

-
"~ MYRITVIPGD GIGVEVMEAA LHVLQALEIE FEFTHAEAGN ECFRRCGDTL

_;'-PEETLKL VRK ADA TLFGA VT TVPGQKSAIl TLRRELDLF A NLRPVKSLPG

" VPCLYPDLDF V~NTEDL YVGDEEYTPE GAVAKRIITR TASRRISQFA
| GIFRD FYKV ASEYPQ MEANDYYVDA

LIGGLGLAP SANIGEKNAL.

. TAMYLITQPQ EFQTIVnNL FGDILSDEAA G
KHLNKKQEAQ KIEKALQKTL

~ FEPVHGSAPQ IAGKNIANPT AMIL TTTLML

. MRGIMTPDLG GT ASTMEMAE AIKEEIVKGE
n this family of proteins? Whif:h aspect (:.-f
he different functions? Which aspect 15
sequence for each function that has

'hich functions have been described i
~ the protein function is conserved between t
least conserved? Find at least one
A "erimenlal support.



