

# **Complexation and Protein binding**BP302T

By **Mr. Peeyush** 

(Assistant professor)
Rama University, Kanpur

1

Faculty of pharmaceutical sciences,

## **Objectives**



- >> Classes of complexes
- >> Description of chelation
- >>Uses of inclusion complexes
- >>Methods of analysis of complexes
- >> Stoichiometric ratio and stability constant
- >>Thermodynamic & stability of complexes

Ramauniversity, Kanpur



### Importance of Complexation

- >> Complexation leads to changing the physical and chemical properties
  - **1.Solubility** (e.g. theophylline complexation with ethylenediamine to from aminophylline)
  - 2. Stability (e.g. inclusion complexes of labile drugs with cyclodextrins).
  - **3.Absorption** (e.g. Tetracycline with Ca ion form non absorbable complex)
  - 4. Pharmacokinetics (e.g. protein binding, renal excretion)
  - **5.Pharmacodynamics** (e.g. Change drug receptor binding and so change biological activity).

Faculty of pharmaceutical sciences,
Ramauniversity, Kanpur



### **Complexation Interactions**

- >> Eithercoordinate bonding or one or more of the following interactions:
  - Van der Waals forces
  - 2. Dipolar forces
  - 3. Electrostatic forces
  - 4. Hydrogen bonding
  - 5. Charge transfer
  - 6. Hydrophobic interactions.



### **Complexation**

- >> Coordination complex: resulted from Lewis acid-base reaction between **donor** and **acceptor** molecules.
- metallic) and surrounded by array of bound neutral molecules or anions (called *ligands*).

  NH<sub>3</sub>

H<sub>3</sub>N Co NH<sub>3</sub>

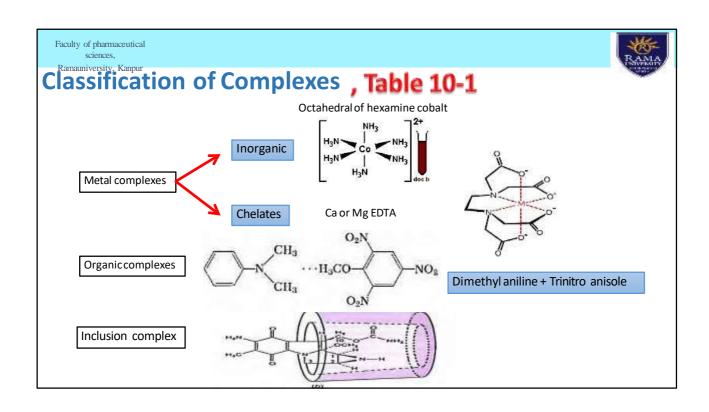
5

Faculty of pharmaceutical sciences,

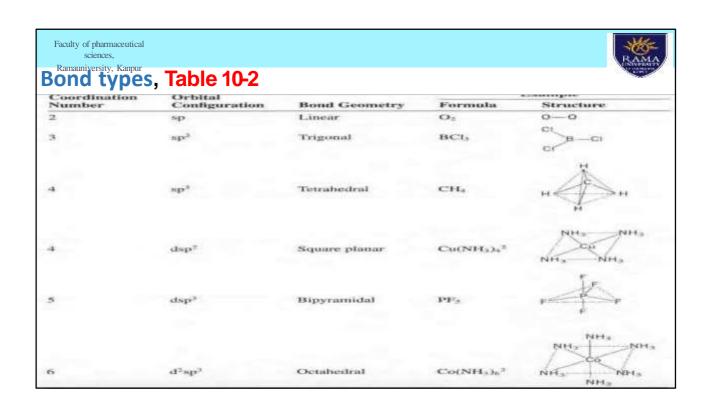
Ramauniversity, Kanpur

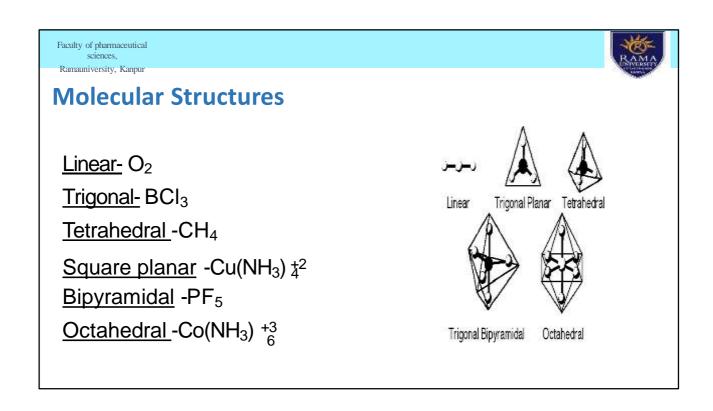


### **Coordination complex**


#### Acceptor:

- Central atom
- · Metallic ion
- Organic gr with free orbital (Lewis acid)


#### Donor:


- Ligand gr
- Non metallicatom
- Ions or neutral molecules (Lewis base)

6



| Hybridiz Shell      | 1 | OH 2 | 2 |   | 3 |    |   | 4 | 1  |    |
|---------------------|---|------|---|---|---|----|---|---|----|----|
| Orbital<br>subshell | S | S    | р | S | р | d  | S | р | d  | f  |
| No of<br>electron   | 2 | 2    | 6 | 2 | 6 | 10 | 2 | 6 | 10 | 14 |



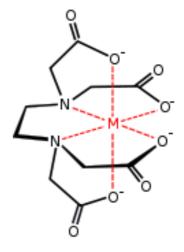


Faculty of pharmaceutical



## Ramauniversity, Kanpur Metal complexes

- The central part is metal
- Sub classified according to ligand type into:
- a) Inorganic complexes:
  - $\gg$ E.g. Co(NH<sub>3</sub>)<sub>6</sub>+3: The coordination number is —— & geometry is —
- b) Chelates:
  - >>Should be multi-dentate
  - >> Should have specific steric orientation
  - >>Eg.B12, hemoglobin, alcohol dehydrogenase, chlorophyll, and Albumin


Faculty of pharmaceutical

Ramauniversity, Kanpur



#### **EDTA**

- Ethylene diamine tetra acetic acid
- It is hexa-dentate ( 2 from Nitrogen atom and 4 from Oxygen)
- Used to remove Ca, Iron and cupper from solutions.
- The geometrical shape is ......

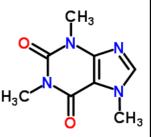


Ramauniversity, Kanpur



### **Organic complexes**

- · No metal ion.
- Molecules held by weak donor acceptor forces
- E.g.: dimethylaniline with 2,4,6 trinitroanisole


Faculty of pharmaceutical sciences,

Ramauniversity, Kanpur



#### **Drug complexes**

- >> Complexation of caffeine (Caf)
- -Two types of interaction between Caf + Acidic drugs (e.g. sulfonamide or barbiturate).
  - 1. Dipole-dipole interaction and H-bonding between polarized carbonyl group of Caf with H of the acids:
  - 2. Nonpolar interaction between the non polar parts of the molecules
- -These interactions lead to change solubility, absorption and bioavailability.



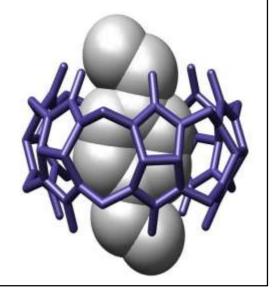
**CAFFEINE** 

Ramauniversity, Kanpu



### Polymer complexes

- >>Eg: PEG, PVP, and Na CMC
- >> Contain nucleophilic oxygens.
- >> Canresult in:
  - 1. Incompatibility and stability problems.
  - 2. Interaction with plastic containers.
  - 3. Precipitation and solubility problems.
  - 4. Changing dissolution rate, absorption, and bioavailability.


$$H = \begin{pmatrix} O & & - \begin{pmatrix} CH_2 - CH_1 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \end{pmatrix} = \begin{pmatrix} H & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \end{pmatrix} = \begin{pmatrix} H & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \end{pmatrix} = \begin{pmatrix} H & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \end{pmatrix} = \begin{pmatrix} H & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \end{pmatrix} = \begin{pmatrix} H & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \end{pmatrix} = \begin{pmatrix} H & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \end{pmatrix} = \begin{pmatrix} H & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \end{pmatrix} = \begin{pmatrix} H & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ & & & \begin{pmatrix} CH_2 - CH_2 \end{pmatrix}_n \\ &$$

Faculty of pharmaceutical

Ramauniversity Kannu

### Inclusion/Occlusion compounds

- Aclass of addition compounds where one of the constituent of the complex is trapped in the the other to yield a stable layout.
- >>Typeof Host-Guest compound.
- >> Depends on the **architecture** arrangement rather than the chemical affinity.





### Inclusion/Occlusion compounds

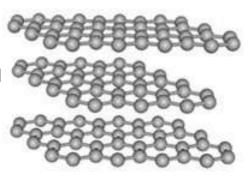
#### **Channel Lattice type –**

>>Themolecular structure within the crystal arrange to form channels that can fit (trap) molecules inside.

>>tis useful techniques incompound separation.

>> examples are deoxycholic acid and urea.

al p)


Faculty of pharmaceutical sciences,

Ramauniversity, Kanpur

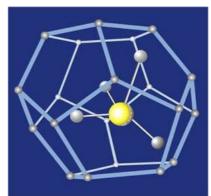


#### Layer type-

- >>Thecrystals arrange in layers that can trap small molecules such as alcohols and glycols
- >>Intercalate compounds b/n its layers.
- >> Example: bentonite and graphite



Graphite


Ramauniversity, Kanpu

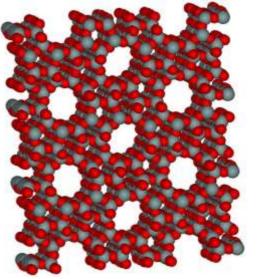


### Inclusion/Occlusion compounds

#### Clathrates -

- >> Crystallize in a cage-like lattice
- >> Depends on molecular size of the entrapped component.
- ➤ Example: Hydroquinone crystals that traps methanol, CO₂ and HCl but not smaller and larger molecules.




Faculty of pharmaceutical sciences,

Ramauniversity Kannur

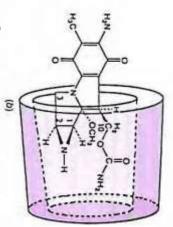
Inclusion/Occlusion compounds

#### Molecular sieves-

- >>Also called macromolecular inclusion compounds.
- >>Atomsarranged in 3-D to form cages and channels with different pore size.
- >>Used to separate molecules with different dimensions.
- >> Example: zeolites, dextrins and silicagels.



## RAMA


### Inclusion/Occlusion compounds

#### Monomolecular inclusion compounds-

>>Involve entrapment of a single guest molecule in the cavity of one host molecule.

>>E.g.: Cyclodextrin:

One of the most important molecular complexations is the interaction between molecules and cyclodextrin to form reversible inclusion complexes.

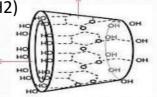


Faculty of pharmaceutical sciences,

Ramauniversity, Kanpur

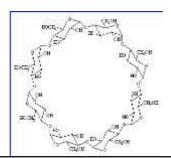
### Inclusion/Occlusion compounds

Cyclodextrin-


>>Interaction:

Interior cavity: Hydrophobic

(-CH2)


Entrance : Hydrophilic

(-OH)



#### >>Types:

- · Alpha 6 molecules
- Beta 7 molecules
- Gamma 8 molecules





### **Applications of CD**

| Property                       | Drug Examples                   |
|--------------------------------|---------------------------------|
| ↑ aqueous solubility           | Prostaglandins;; NSAIDs         |
| ↑ stability                    | Aspirin, atropine, digoxin      |
| ↑ absorption & bioavailability | Phenytoin, digoxin              |
| ↑ taste and odor               | Prostaglandins, NSAIDs          |
| Change from liq. To solid      | Nitroglycerin, methyl salicylat |
| <b>↓</b> volatility            | Menthol, salicylic acid         |
| <b>↓</b> stomach irritation    | NSAIDs                          |
| <b>↓</b> incompatibilities     | Vitamins 23                     |

Faculty of pharmaceutical sciences,
Ramauniversity, Kanpur



### **Method of Analysis**

#### a) Stoichiometric ratio

>> Determination of Donor-Acceptor ratio: A<sub>n</sub>B<sub>m</sub>C<sub>x</sub>

#### b) Stability constant:

>> Study the rate of complex degradation is very important in the determination of complex applications

Ramauniversity, Kanpur



### **Method of Analysis**

#### 1. Continuous Variation

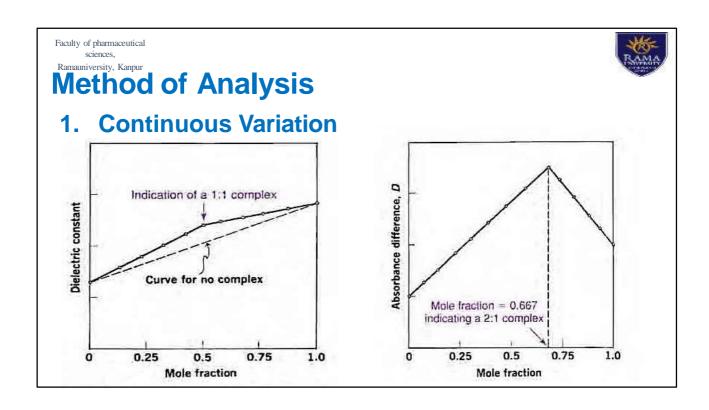
- >> Determination of physical characteristics such as:
  - a) Dielectric constant
  - b) Square of refractive index
  - c) Spectrophotometric extinction coefficient

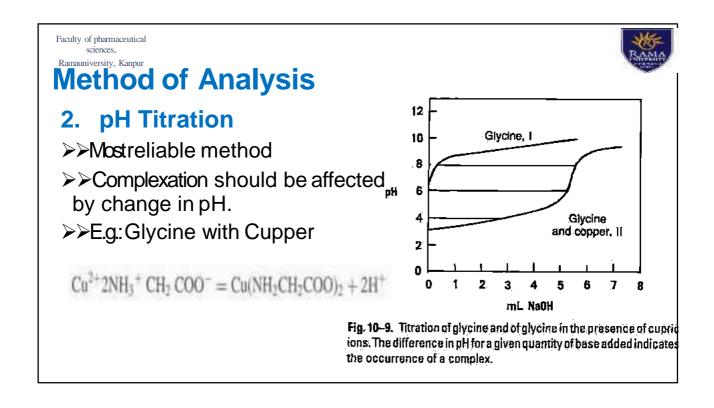
#### >> Conditions

- a) Property of additive behavior
- b) Property sufficiently different
- ro interaction occurs when the components mixed, then the value of the property is the weighted mean of the values of the separate species in the mixture.

Faculty of pharmaceutical

Ramauniversity Kannur





### **Method of Analysis**

#### 1. Continuous Variation

- → Assume a mixture of A and B
- The physical property of A =5
   B =100

| Mole fraction of B | A (5)     | В (100)      | Property result |
|--------------------|-----------|--------------|-----------------|
| 0                  | (1*5)=5   | (0*100)=0    | 5               |
| 0.2                | (0.8*5)=4 | (0.2*100)=20 | 24              |
| 0.4                | (0.6*5)=3 | (0.4*100)=40 | 43              |
| 0.6                | (0.4*5)=2 | (0.6*100)=60 | 62              |
| 0.8                | (0.2*5)=1 | (0.8*100)=80 | 81              |
| 1                  | (0*5)=0   | (1*100)=100  | 100             |





RAMA

### Method of Analysis

#### 3. Distribution method

- >> Measure the stability constant by distribution of the complex bet 2 immiscible solvent.
- >> E.g.: Iodine and Potassium Iodide in water and CS<sub>2</sub>

$$I_2 + I^- \rightleftharpoons I_3^-$$

>> Example 10-2, Home work

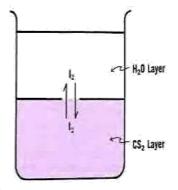



Fig. 10-11. The distribution of iodine between water and carbon distribute.

Faculty of pharmaceutical sciences.

Ramauniversity Kannur

### **Method of Analysis**

#### 4. Solubility method

- >> Measure the solubility by shake flask method.
- >> E.g.: Para amino benzoic acid (PABA) + Caffeine.
- → Cases:

 $A \ll$ 

>>B

>>BC

>>After C

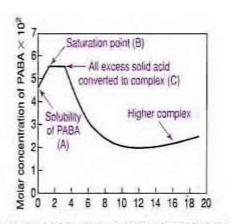
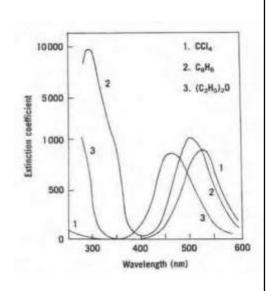




Fig. 10–12. The solubility of para-aminobenzoic acid (PABA) in the presence of caffeine. (From T. Higuchi and J. L. Lack, J. Am. Pharm. Assoc. Sci. Ed. 43, 525, 1954.)

### Method of Analysis

#### **Spectroscopy**

- >> Absorption spectroscopy in the visible and ultraviolet regions.
- $\rightarrow \rightarrow E.g.:I_2$  in:
  - >>CC<sub>4</sub>= one peak 520nm (Violet)
  - >>Benzene = 475nm & 300nm (Red)
  - >> Diethyl ether =450nm & 300nm (Red)
- >> is electron acceptor;; in CCl₄ no complex (not a donor). The other 2 solvents act as electron releasing agents and formed charged transfer complex with I<sub>2</sub>.



Faculty of pharmaceutical

## Method of Analysis

#### Other methods:

- >>NVR
- >>R
- >>X-raydiffraction
- >> Electron diffraction



Ramauniversity, Kanpur



### Thermodynamic and Complexation

**>>f∆G°** 

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

- >> Negative = Stable complex
- >> Positive = Unstable and depend on the situation.

### TABLE 11—11. Positive and Negative Thermodynamic Functions Resulting from Several Kinds of Interactions

| Type of Interaction |                                                                      | Sig | n on | $-\Delta G^{\circ}$ is                         |
|---------------------|----------------------------------------------------------------------|-----|------|------------------------------------------------|
|                     |                                                                      | ΔH° | ΔS°  | Favored By                                     |
| 1.                  | Electrostatic                                                        | ~0  | +    | +AS°                                           |
| 2.                  | Hydrophobic                                                          | +   | +    | large + \Delta S^o                             |
| 3.                  | Chelation (polydentate ligand)                                       | _   | +    | $+\Delta S^{\circ}$ and/or $-\Delta H^{\circ}$ |
|                     | Donor—acceptor (hydrogen bonding and chelation [monodentate ligand]) | -   | -    | $-\Delta H^{\circ}$                            |

Faculty of pharmaceutical sciences,
Ramauniversity, Kanpur



### Thanks for your attention



34