

Complexation

By Dr. Mohammed Sattar 2017/2018

1

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Objectives

- ➤ Classes of complexes
- ➤ Description of chelation
- ➤ Uses of inclusion complexes
- ➤ Methods of analysis of complexes
- ➤ Stoichiometric ratio and stability constant
- ➤ Thermodynamic & stability of complexes

Importance of Complexation

- ➤ Complexation leads to changing the physical and chemical properties
 - 1. **Solubility** (e.g. theophylline complexation with ethylenediamine to from aminophylline)
 - 2. Stability (e.g. inclusion complexes of labile drugs with cyclodextrins).
 - 3. **Absorption** (e.g. Tetracycline with Ca ion form non absorbable complex)
 - 4. Pharmacokinetics (e.g. protein binding, renal excretion)
 - 5. **Pharmacodynamics** (e.g. Change drug receptor binding and so change biological activity).

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Complexation Interactions

- ➤ Either coordinate bonding or one or more of the following interactions:
 - 1. Van der Waals forces
 - 2. Dipolar forces
 - 3. Electrostatic forces
 - 4. Hydrogen bonding
 - 5. Charge transfer
 - 6. Hydrophobic interactions.

Complexation

- ➤ Coordination complex: resulted from Lewis acid-base reaction between **donor** and **acceptor** molecules.
- ➤It consists of central atom or ion (*coordination center*, usually metallic) and surrounded by array of bound neutral molecules or anions (called *ligands*).

 NH₃

H₃N Co NH₃

5

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Coordination complex

- Acceptor
 - · Central atom
 - · Metallic ion
 - Organic gr with free orbital (Lewis acid)
- Donor:
 - Ligand gr
 - Non metallic atom
 - Ions or neutral molecules (Lewis base)

6

COLLEGE OF PHARMACY JNIVERSITY OF BASRAH										
Hybridization										
Shell	1	2	2		3			4	4	
Orbital subshell	S	S	р	S	р	d	S	р	d	f
No of electron	2	2	6	2	6	10	2	6	10	14
• C^6 hybridization is sp^3 • N^7 hybridization is sp^3							8			

	s, Table 10-2			
Coordination Number	Orbital Configuration	Bond Geometry	Formula	Structure
2	sp	Linear	O ₂	0-0
3	sp^2	Trigonal	BCI ₃	CI B-CI
4	sp ³	Tetrahedral	CH ₄	H H
4	dsp^2	Square planar	Cu(NH ₃) ₄ ²	NH ₃ NH ₃
5	dsp^3	Bipyramidal	PF ₅	
5	dsp^3 d^2sp^3	Bipyramidal	PF ₅ Co(NH ₃) ₆ ³	NH.

Metal complexes

- The central part is metal
- Sub classified according to ligand type into:
- a) Inorganic complexes:
 - \triangleright E.g. Co(NH₃)₆+3: The coordination number is ----- & geometry is ------
- b) Chelates:
 - ➤ Should be multi-dentate
 - ➤ Should have specific steric orientation
 - ≻E.g. B12, hemoglobin, alcohol dehydrogenase, chlorophyll, and Albumin

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

EDTA

- Ethylene diamine tetra acetic acid
- It is hexa-dentate (2 from Nitrogen atom and 4 from Oxygen)
- Used to remove Ca, Iron and cupper from solutions.
- The geometrical shape is

12

Organic complexes

- · No metal ion.
- Molecules held by weak donor acceptor forces
- E.g.: dimethylaniline with 2,4,6 trinitroanisole

$$\begin{array}{c|c} CH_3 & O_2N \\ \hline \\ -N & + H_3CO \\ \hline \\ CH_3 & O_2N \\ \hline \\ CH_3 & \cdots \\ H_3CO \\ \hline \\ CH_3 & \cdots \\ \hline \\ O_2N \\ \hline \\ O_2N \\ \hline \\ O_2N \\ \hline \\ O_2N \\ \hline \end{array}$$

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Drug complexes

➤ Complexation of caffeine (Caf)

- Two types of interaction between Caf + Acidic drugs (e.g. sulfonamide or barbiturate).
 - 1. Dipole-dipole interaction and H- bonding between polarized carbonyl group of Caf with H of the acids:
 - 2. Nonpolar interaction between the non polar parts of the molecules

CAFFEINE

- These interactions lead to change solubility, absorption and bioavailability.

Polymer complexes

- ➤ E.g. : PEG , PVP, and Na CMC
- ➤ Contain nucleophilic oxygens.
- ➤ Can result in:
 - 1. Incompatibility and stability problems.
 - 2. Interaction with plastic containers.
 - 3. Precipitation and solubility problems.
 - 4. Changing dissolution rate, absorption, and bioavailability.

$$H = 0$$

$$-\text{CH}_2$$
 $-\text{CH}$ $-\text{N}$

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Inclusion/Occlusion compounds

- A class of addition compounds where one of the constituent of the complex is trapped in the the other to yield a stable layout.
- ➤ Type of **Host-Guest** compound.
- ➤ Depends on the architecture arrangement rather than the chemical affinity.

Inclusion/Occlusion compounds

Channel Lattice type –

- The molecular structure within the crystal arrange to form channels that can fit (trap) molecules inside.
- ➤It is useful techniques in compound separation.
- > examples are deoxycholic acid and urea.

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Inclusion/Occlusion compounds

Layer type-

- ➤ The crystals arrange in layers that can trap small molecules such as alcohols and glycols
- ➤Intercalate compounds b/n its layers.
- >Example: bentonite and graphite

Graphite

Inclusion/Occlusion compounds

Clathrates -

- ➤ Crystallize in a cage-like lattice
- ➤ Depends on molecular size of the entrapped component.
- ➤ Example: Hydroquinone crystals that traps methanol, CO₂ and HCl but not smaller and larger molecules.

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Inclusion/Occlusion compounds

Molecular sieves-

- >Also called macromolecular inclusion compounds.
- Atoms arranged in 3-D to form cages and channels with different pore size.
- ➤ Used to separate molecules with different dimensions.
- Example: zeolites, dextrins and silica gels.

Inclusion/Occlusion compounds

Monomolecular inclusion compounds-

➤ Involve entrapment of a single guest molecule in the cavity of one host molecule.

➤ E.g.: Cyclodextrin:

One of the most important molecular complexations is the interaction between molecules and cyclodextrin to form reversible inclusion complexes.

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Inclusion/Occlusion compounds

Cyclodextrin-

➤Interaction:

Interior cavity: Hydrophobic

(- CH2)

Entrance: Hydrophilic (- OH)

➤Types:

- Alpha 6 molecules
- Beta 7 molecules
- Gamma 8 molecules

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH **Applications of CD Drug Examples Property †** aqueous solubility **Prostaglandins; NSAIDs ↑** stability Aspirin, atropine, digoxin ↑ absorption & bioavailability Phenytoin, digoxin ↑ taste and odor **Prostaglandins, NSAIDs** Change from liq. To solid Nitroglycerin, methyl salicylat ↓ volatility Menthol, salicylic acid **↓** stomach irritation **NSAIDs Vitamins** incompatibilities

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Method of Analysis

a) Stoichiometric ratio

➤ Determination of Donor-Acceptor ratio: A_nB_mC_x

b) Stability constant:

➤ Study the rate of complex degradation is very important in the determination of complex applications

Method of Analysis

1. Continuous Variation

- > Determination of physical characteristics such as:
 - a) Dielectric constant
 - b) Square of refractive index
 - c) Spectrophotometric extinction coefficient

≻Conditions

- a) Property of additive behavior
- b) Property sufficiently different
- ➤ If no interaction occurs when the components mixed, then the value of the property is the weighted mean of the values of the separate species in the mixture.

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Method of Analysis

1. Continuous Variation

- Assume a mixture of A and B
- ➤ The physical property of A =5
 B =100

Mole fraction of B	A (5)	B (100)	Property result
0	(1*5)=5	(0*100)=0	5
0.2	(0.8*5)=4	(0.2*100)=20	24
0.4	(0.6*5)=3	(0.4*100)=40	43
0.6	(0.4*5)=2	(0.6*100)=60	62
0.8	(0.2*5)=1	(0.8*100)=80	81
1	(0*5)=0	(1*100)=100	100

Method of Analysis

3. Distribution method

- ➤ Measure the stability constant by distribution of the complex bet 2 immiscible solvent.
- ➤ E.g.: lodine and Potassium lodide in water and CS₂

$$I_2 + I^- \Rightarrow I_3^-$$

➤ Example 10-2, Home work

Fig. 10-11. The distribution of lodine between water and carbon distribute

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Method of Analysis

4. Solubility method

- Measure the solubility by shake flask method.
- ➤ E.g.: Para amino benzoic acid (PABA) + Caffeine.
- > Cases:
 - > A
 - ≽B
 - >B-C
 - ➤ After C

Fig. 10–12. The solubility of *para*-aminobenzoic acid (PABA) in the presence of caffeine. (From T. Higuchi and J. L. Lack, J. Am. Pharm. Assoc. Sci. Ed. **43**, 525, 1954.)

Method of Analysis

5. Spectroscopy

- ➤ Absorption spectroscopy in the visible and ultraviolet regions.
- > E.g.: I₂ in:
 - >CCl₄ = one peak 520nm (Violet)
 - ➤ Benzene = 475nm & 300nm (Red)
 - ➤ Diethyl ether =450nm & 300nm (Red)
- ▶ I₂ is electron acceptor; in CCI₄ no complex (not a donor). The other 2 solvents act as electron releasing agents and formed charged transfer complex with I₂.

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Method of Analysis

Other methods:

- >NMR
- >IR
- >X-ray diffraction
- ➤ Electron diffraction

Thermodynamic and Complexation

≽If ΔG°

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

- ➤ Negative = Stable complex
- ➤ Positive = Unstable and depend on the situation.

TABLE 11-11. Positive and Negative Thermodynamic Functions Resulting from Several Kinds of Interactions

Sig	n on	− ΔG ° is	
ΔH° ΔS°		Favored By	
~0 + - -	+ + + -	$+\Delta S^{\circ}$ large $+\Delta S^{\circ}$ $+\Delta S^{\circ}$ and/or $-\Delta H^{\circ}$ $-\Delta H^{\circ}$	
	ΔH°	ΔH° ΔS° ~0 + + +	

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Thanks for your attention

34