

FACULTY OF ENGINEERING \& TECHNOLOGY

Dileep Kumar

Assistant Prof. EE Deptt

NUMBER SYSTEM

Introduction

Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26 English letters, binary, decimal digits etc.
A number system with base or radix r contains, r different digit \& they have from o to $r-1$.

S.N.	Base(r)	Different Digit (o to r-1)	Number System
1	2	0,1	Binary
2	8	$0,1,2,3,4,5,6,7$	Octal
3	10	$0,1,2,3,4,5,6,7,8,9$	Decimal
4	16 or H	$0,1,2,3,4,5,6,7,8,9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$	Hexadecimal

1.Binary Number System

-The binary number has a radix of 2 . As $r=2$, only two digits ($0 \& 1$) are needed.
-Two digits (0 \& 1) is also known as binary digit or simply bits.
-A binary number consisting n bits is called an n bit number.
-Each digit is multiplied by an appropriate power of 2 depending on its position in the number.

- A group of 4 bits is called as nibble (e.g.1001).
- A group of 8 bits is called as byte(e.g. 10111001).
-Thus we write binary number as $10000111110,111100,000011, \ldots \ldots$.

NUMBER SYSTEM

2.Octal Number System

-The octal number has a radix of 8 .
-Each digitis multiplied by an appropriate power of 8 depending on its position in the number.
-Thus we write octal number as $(22)_{8},(45)_{8},(17)_{8}$

$$
N=(2322)_{8}=\left(2 \times 8^{3}+3 \times 8^{2}+2 \times 8^{1}+2 \times 8^{0}\right)
$$

3.Decimal Number System

-The decimal number has a radix of 10 .
-Each digit is multiplied by an appropriate power of 10 depending on its position in the number.
-Thus we write decimal number as $(12)_{10},(345)_{10},(119)_{10},(200)_{10},(313.9)_{10}$

$$
N=(30.2)_{10}=\left(30 \times 10^{1}+0 \times 10^{0}+2 \times 10^{-1}\right)
$$

4.Hexadecimal Number System

-The hexadecimal number has a radix of 16 or H .
-Each digit is multiplied by an appropriate power of 16 depending on its position in the number.
-Thus we write decimal number as (A2) ${ }_{16},(34 \mathrm{~B})_{\mathrm{H}},(89)_{16},(\mathrm{E} 00)_{16}$

$$
N=(A 2)_{16}=\left(A \times 16^{2}+2 \times 16^{0}\right)
$$

NUMBER SYSTEM

Conversion of a Decimal Number to any other number of base r

To convert decimal number into any other, base r divide integer part \& multiply fractional part with base r .
Example 1. Convert the number $(333.625)_{10}$ to (............ $)_{2}$.

Integer Part

Division	Quotient	Remainder	
$333 / 2$	166	1	\uparrow
$166 / 2$	83	0	
$83 / 2$	41	1	
$41 / 2$	20	1	
$20 / 2$	10	0	
$10 / 2$	5	0	
$5 / 2$	2	1	
$2 / 2$	1	0	
$1 / 2$	0	1	

Multiplication	Multiplication Result	Integer Part	
0.625×2	1.25	1	
0.25×2	0.5	0	
0.5×2	1.0	1	\downarrow

$(333.625)_{10}$ to $(101001101.101)_{2}$.

NUMBER SYSTEM

Example 2. Convert the number $(333.625)_{10}$ to (............ $)_{8}$.
Integer Part

Division	Quotient	Remainder
$333 / 8$	41	5
$41 / 8$	5	1
$5 / 8$	0	5

Example 3. Convert the number $(333.625)_{10}$ to $(\ldots)_{16}$.
Integer Part

Division	Quotient	Remainder	
$333 / 16$	2	$13=\mathrm{D} \quad \uparrow$	
$2 / 16$	0	2	

Fractional Part

Multiplication	Multiplication Result	Integer Part	
0.625×8	5.0	5	\downarrow

$$
(333.625)_{10} \text { to }(515.5)_{8} .
$$

Fractional Part

Multiplication	Multiplication Result	Integer Part	
0.625×16	10.0	$10=\mathrm{A}$	\downarrow

$(333.625)_{10}$ to (2D.A $)_{16 .}$

NUMBER SYSTEM

Q. 1 Convert the following numbers from base 10 to base 16-
-(2020) ${ }_{10}$
-(2020.65625) ${ }_{10}$
$\cdot(172)_{10}$
-(172.983) ${ }_{10}$
Q. $2(2020.65625)_{10} \rightarrow(?)_{8}$
Q. $3(25)_{10} \rightarrow(?)_{2}$
Q. $4(23.5)_{10} \rightarrow(?)_{2}$
Q. $5(254)_{10} \rightarrow(?)_{16}$
Q. $6(32)_{10} \rightarrow(?)_{4}$
Q. $7(27.4)_{10} \rightarrow(?)_{4}$
Q. $8(25.625)_{10} \rightarrow(?)_{8}$

