

FACULTY OF ENGINEERING & TECHNOLOGY

Electrical Machine-1

Amit Kumar Singh

Electrical Braking

Electrical Braking is usually employed in applications to stop a unit driven by motors in an exact position or to have the speed of the driven unit suitably controlled during its deceleration. Electrical braking is used in applications where frequent, quick, accurate or emergency stops are required.

Types of Electrical Braking

There are three types of Electric Braking in a DC motor.

- 1. Regenerative Braking,
- 2. Dynamic or Rheostatic Braking
- 3. Plugging or Reverse Current Braking

Regenerative Braking

In Regenerative Braking, the power or energy of the driven machinery which is in kinetic form is returned back to the power supply mains. This type of braking is possible when the driven load or machinery forces the motor to run at a speed higher than no load speed with a constant excitation.

DC MACHINES

Dynamic Braking or Rheostatic Braking of DC Motor

In Dynamic Braking, a braking resistor Rb is connected across the armature as soon as the DC motor is disconnected from the supply mains. The motor now works as a generator, producing the braking torque.

Plugging or Reverse Current Braking

In Plugging or Reverse Current Braking the armature terminals or the supply polarity of a separately excited or shunt motor when running are reversed. Therefore, in Plugging the supply voltage V and the induced voltage

E_b which is also called back EMF will act in the same direction.

Applications of DC motors

Type of Motor	Characteristics	Applications
Shunt	Speed is fairly constant and medium starting torque.	 Blowers and fans Centrifugal and reciprocating pumps Lathe machines Machine tools Milling machines Drilling machines
Series	High starting torque. No load condition is dangerous. Variable speed.	 Cranes Hoists, Elevators Trolleys Conveyors Electric locomotives
Cumulative compound	High starting torque. No load condition is allowed.	 Rolling mills Punches Shears Heavy planers Elevators
Differential compound	Speed increases as load increases.	Not suitable for any practical applications