

FACULTY OF ENGINEERING & TECHNOLOGY

**Electrical Machine-1** 

Amit Kumar Singh

## **DC MACHINES**

### The Equivalent Circuit of a Transformer

The losses that occur in transformers have to be accounted for in any accurate model of transformer behavior.

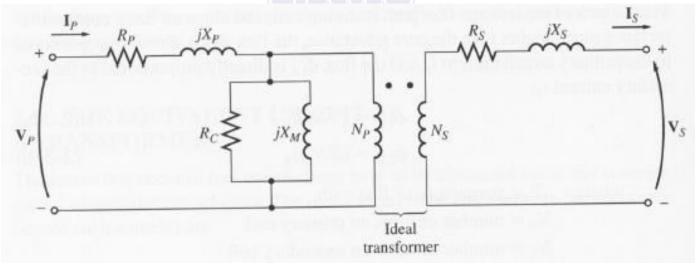
1. *Copper (I<sup>2</sup>R) losses*. Copper losses are the resistive heating losses in the primary and secondary windings of the transformer. They are proportional to the square of the current in the windings.

2. *Eddy current losses*. Eddy current losses are resistive heating losses in the core of the transformer. They are proportional to the square of the voltage applied to the transformer.

3. *Hysteresis losses*. Hysteresis losses are associated with the rearrangement of the magnetic domains in the core during each half-cycle. They are a complex, nonlinear function of the voltage applied to the transformer.

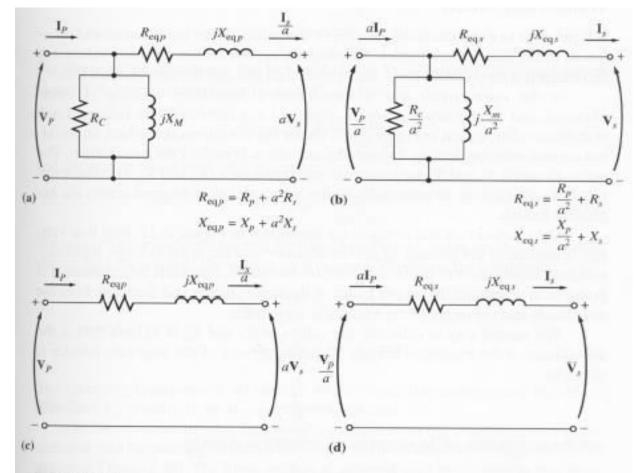
4. *Leakage flux*. The fluxes which escape the core and pass through only one of the transformer windings are leakage fluxes. These escaped fluxes produce a self-inductance in the primary and secondary coils, and the effects of this inductance must be accounted for.

# **DC MACHINES**


### The Exact Equivalent Circuit of a Transformer

*Modeling the copper losses:* resistive losses in the primary and secondary windings of the core, represented in the equivalent circuit by  $R_P$  and  $R_S$ .

*Modeling the leakage fluxes:* primary leakage flux is proportional to the primary current  $I_P$  and secondary leakage flux is proportional to the secondary current  $I_S$ , represented in the equivalent circuit by  $X_P$  (=f<sub>LP</sub>/ $I_P$ ) and  $X_S$  (=f<sub>LS</sub>/ $I_S$ ).


*Modeling the core excitation:*  $I_m$  is proportional to the voltage applied to the core and lags the applied voltage by 90°. It is modeled by  $X_M$ .

*Modeling the core loss current:*  $I_{h+e}$  is proportional to the voltage applied to the core and in phase with the applied voltage. It is modeled by  $R_c$ .



### **DC MACHINES**

### **Approximate Equivalent Circuits of a Transformer**



#### FIGURE 2-18

Approximate transformer models. (a) Referred to the primary side; (b) referred to the secondary side; (c) with no excitation branch, referred to the primary side; (d) with no excitation branch, referred to the secondary side.