

FACULTY OF ENGINEERING & TECHNOLOGY

Electrical Machine-ii

Amit Kumar Singh

STATOR VOLTAGE CONTROL

- Synchronous speed Ns = 2 of P
 - Slip = Ns-N
 Ns
 - Torque $T = \frac{3}{2\pi N_s} X \frac{E_2^2 R_2}{R_2^2 + X}$ = • Where E₂ is the rotor emf
 - ✤ N_s is the synchronous speed
 - ✤ R₂ is the rotor resistance
 - $\, \star \ \ X_2 \, is \, the \, rotor \, inductive \, reactance \,$
 - ✤ Rotor resistance R₂ is constant and if slip s is small then sX₂ is so small that it can be neglected. Therefore, T ∝ sE₂² where E₂ is rotor induced emf and E₂ ∝ V

And hence $T \propto V^2$, thus if supplied voltage is decreased, torque decreases and hence the speed decreases.

- This method is the easiest and cheapest, still rarely used because- A large change in supply voltage is required for relatively small change in speed.
- Large change in supply voltage will result in large change in flux density, hence disturbing the magnetic conditions of the motor.

• Given a load T- ω characteristic, the steady-state speed can be changed by altering the T- ω curve of the motor

a) By changing the applied voltage:

Torque equation of induction motor is

$$T = \frac{k_1 s E_2^2 R_2}{\sqrt{(R_2^2 + (s X_2)^2)}} = \frac{3}{2\pi N_s} \frac{s E_2^2 R_2}{\sqrt{(R_2^2 + (s X_2)^2)}}$$

Rotor resistance R_2 is constant and if slip s is small then sX_2 is so small that it can be neglected. Therefore, $T \propto sE_2^2$ where E_2 is rotor induced emf and $E_2 \propto V$ & hence $T \propto V^2$, thus if supplied voltage is decreased, torque decreases and hence the speed decreases.

This method is the easiest & cheapest, still rarely used because-

1) A large change in supply voltage is required for relatively small change in speed.

2) Large change in supply voltage will result in large change in flux density, hence disturbing the magnetic conditions of the motor.

Variable Frequency Control of IM (v/f control)

• Speed control above rated (base) speed

- Requires the use of PWM inverters to control frequency of motor
- Frequency increased (i.e. ω_s increased)
- Stator voltage held constant at rated value
- Air gap flux and rotor current decreases
- Developed torque decreases

$T_e \propto (1/\omega_s)$

• For control below base speed -

use Constant

Volts/Hz method

