

FACULTY OF ENGINEERING \& TECHNOLOGY

Electrical Machine-ii

Amit Kumar Singh

INDUCTION MOTOR

ASSEMBLY OF 3-PH INDUCTION MOTER

A typical 3-phase induction motor [Courtesy of Electromotors WEG SA, Brazil]

INDUCTION MOTOR

Principle of Operation I.M

When a 3 phase stator winding is connected to a 3 phase voltage supply, 3 phase current will flow in the windings, which also will induced 3 phase flux in the stator. These flux will rotate at a speed called a Synchronous Speed, n_{s}. The flux Is called as Rotating magnetic Field.

Synchronous speed is given by the expression

$$
N_{s}=\frac{120 f}{P}
$$

Where $p=$ is the number of poles, and

$$
f=\text { the frequency of supply }
$$

* This rotating magnetic field cuts the rotor windings and produces an induced voltage in the rotor windings
* Due to the fact that the rotor windings are short circuited, for both squirrel cage and wound-rotor, and induced current flows in the rotor windings
*The rotor current produces another magnetic field
\star A torque is produced as a result of the interaction of those two magnetic fields

$$
\tau_{i n d}=k B_{R} \times B_{s}
$$

Where $\tau_{\text {ind }}$ is the induced torque and B_{R} and B_{S} are the magnetic flux densities of the rotor and the stator respectively

SLIP

- The force exerted by the rotor bars causes the rotor to turn in the direction of the rotating magnetic field.
- The difference between the rotor speed, n_{r}, and the synchronous speed, $n s$, is called the Slip Speed.

$$
\text { Slip Speed }=n_{s}-n_{r} \quad(\text { rpm or rev/s })
$$

- The ratio $\left(n_{\mathrm{s}}-n_{\mathrm{r}}\right) / n_{\mathrm{s}}$ is called the Fractional Slip or just the Slip, s, and is usually expressed as a percentage. Thus

$$
\text { Slip, } S=\left(n_{\mathrm{s}}-n_{\mathrm{r}}\right) / n_{\mathrm{s}}
$$

- Typical values of slip between no load and full load are about 4 to 5 per cent for small motors and 1.5 to 2 per cent for large motors.

Rotor E.M.F. and Other Parameters

- Rotor e.m.f

When an induction motor is stationary, the stator and rots

- when running, rotor e.m.f. per phase $=E_{r}=S E_{2}$
- $E_{2}=S \frac{N_{2}}{N_{1}} E_{1}$

