

FACULTY OF ENGINEERING & TECHNOLOGY

Electrical Machine-ii

Amit Kumar Singh

INDUCTION MOTOR

ASSEMBLY OF 3-PH INDUCTION MOTER

A typical 3-phase induction motor [Courtesy of Electromotors WEG SA, Brazil]

INDUCTION MOTOR

Principle of Operation I.M

When a 3 phase stator winding is connected to a 3 phase voltage supply, 3 phase current will flow in the windings, which also will induced 3 phase flux in the stator. These flux will rotate at a speed called a Synchronous Speed, n_s. The flux is called as Rotating magnetic Field.

Synchronous speed is given by the expression

Where p = is the number of poles, and

f = the frequency of supply

This rotating magnetic field cuts the rotor windings and produces an induced voltage in the rotor windings.

◆Due to the fact that the rotor windings are short circuited, for both squirrel cage and wound-rotor, and induced current flows in the rotor windings

The rotor current produces another magnetic field

A torque is produced as a result of the interaction of those two magnetic fields

$$\tau_{ind} = kB_R \times B_s$$

Where τ_{ind} is the induced torque and B_R and B_S are the magnetic flux densities of the rotor and the stator respectively

SLIP

- The force exerted by the rotor bars causes the rotor to turn in the direction of the rotating magnetic field.
- The difference between the rotor speed, n_r , and the synchronous speed, n_s , is called the **Slip Speed**.

Slip Speed = $n_s - n_r$ (rpm or rev/s)

The ratio (n_s - n_r)/ n_s is called the Fractional Slip or just the Slip, s, and is usually expressed as a percentage.
Thus

• Typical values of slip between no load and full load are about 4 to 5 per cent for small motors and 1.5 to2 per cent for large motors.

Rotor E.M.F. and Other Parameters

• Rotor e.m.f

When an induction motor is stationary, the stator and rote

- when running, rotor e.m.f. per phase = $E_r = SE_2$
- $E_2 = S \frac{N_2}{N_1} E_1$

