Computer numbering systems

5.1 Binary numbers

The system of numbers in everyday use is the denary or decimal system of numbers, using the digits 0 to 9 . It has ten different digits $(0,1,2,3,4,5,6,7,8$ and 9$)$ and is said to have a radix or base of 10 .

The binary system of numbers has a radix of 2 and uses only the digits 0 and 1 .

5.2 Conversion of binary to denary

The denary number 234.5 is equivalent to

$$
2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}+5 \times 10^{-1}
$$

i.e. is the sum of terms comprising: (a digit) multiplied by (the base raised to some power).

In the binary system of numbers, the base is 2 , so 1101.1 is equivalent to:

$$
1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+1 \times 2^{-1}
$$

Thus the denary number equivalent to the binary number 1101.1 is

$$
8+4+0+1+\frac{1}{2}, \text { that is } 13.5
$$

i.e. $\mathbf{1 1 0 1}_{\mathbf{1}}^{\mathbf{2}}=\mathbf{1 3 . 5} \mathbf{1 0}$, the suffixes 2 and 10 denoting binary and denary systems of numbers respectively.

Problem 1. Convert 110112 to a denary number.

From above: $11011_{2}=1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}$

$$
\begin{aligned}
& +1 \times 2^{1}+1 \times 2^{0} \\
= & 16+8+0+2+1 \\
= & \mathbf{2 7}_{\mathbf{1 0}}
\end{aligned}
$$

Problem 2. Convert 0.1011_{2} to a decimal fraction.

$$
\begin{aligned}
0.1011_{2} & =1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4} \\
& =1 \times \frac{1}{2}+0 \times \frac{1}{2^{2}}+1 \times \frac{1}{2^{3}}+1 \times \frac{1}{2^{4}} \\
& =\frac{1}{2}+\frac{1}{8}+\frac{1}{16} \\
& =0.5+0.125+0.0625 \\
& =\mathbf{0 . 6 8 7 5} \mathbf{1 0}
\end{aligned}
$$

Problem 3. Convert 101.0101_{2} to a denary number.

$$
\begin{aligned}
101.0101_{2}= & 1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1} \\
& +1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4} \\
= & 4+0+1+0+0.25+0+0.0625 \\
= & \mathbf{5 . 3 1 2 5}_{\mathbf{1 0}}
\end{aligned}
$$

Now try the following exercise

Exercise 17 Further problems on conversion of

 binary to denary numbers (Answers on page 272)In Problems 1 to 4 , convert the binary numbers given to denary numbers.

1. (a) 110
(b) 1011
(c) 1110
(d) 1001
2. (a) 10101
(b) 11001
(c) 101101
(d) 110011
