Problem 14. Convert the following decimal numbers into their hexadecimal equivalents: (a) 37_{10} (b) 108_{10}

(a) 16 <u>37</u> Remainder

$$16 \ \underline{2} \qquad 5 = 5_{16} - 0$$

 $0 \qquad 2 = 2_{16} - 0$

most significant bit $\rightarrow 2.5 \leftarrow$ least significant bit

Hence $37_{10} = 25_{16}$

(b) 16 | 108 Remainder

$$16 \underline{\quad 6} \qquad 12 = C_{16} \underbrace{\qquad}_{6 = 6_{16}} \underbrace{\qquad}_{6 C}$$

Hence $108_{10} = 6C_{16}$

Problem 15. Convert the following decimal numbers into their hexadecimal equivalents: (a) 162_{10} (b) 239_{10}

(a) 16 162 Remainder

$$\begin{array}{ccc} 16 & 10 & 2 = 2_{16} \\ \hline 0 & 10 = A_{16} \\ \hline & A 2 \end{array}$$

Hence
$$162_{10} = A2_{16}$$

(b) 16 <u>239</u> Remainder 16 <u>14</u> 15 = F_{16} 0 14 = E_{16} E F

Hence $239_{10} = EF_{16}$

To convert from binary to hexadecimal:

The binary bits are arranged in groups of four, starting from right to left, and a hexadecimal symbol is assigned to each group. For example, the binary number 1110011110101001

from Table 5.2

is initially grouped in fours as: 1110 0111 1010 1001

and a hexadecimal symbol assigned E 7 A 9

to each group

Hence $111001111010001_2 = E7A9_{16}$

To convert from hexadecimal to binary:

The above procedure is reversed, thus, for example,

 $6CF3_{16} = 0110\ 1100\ 1111\ 001\ 1$ from Table 5.2

i.e. $6CF3_{16} = 110110011110011_2$

Problem 16. Convert the following binary numbers into their hexadecimal equivalents:

(a) 11010110₂ (b) 1100111₂

(a) Grouping bits in fours from the			
right gives:	0101	0110	
and assigning hexadecimal symbols			
to each group gives:	D	6	
	from Table 5.2		
TI 11010110 DC			

Thus, $11010110_2 = D6_{16}$

(b) Grouping bits in fours from the		
right gives:	0110	0111
and assigning hexadecimal symbols		
to each group gives:	6	7
	from Table 5.2	

Thus, $1100111_2 = 67_{16}$

Problem 17. Convert the following binary numbers into their hexadecimal equivalents:

(a) 11001111₂ (b) 110011110₂

(a) Grouping bits in fours from the		
right gives:	1100	1111
and assigning hexadecimal symbols		
to each group gives:	С	F
	from Table 5.2	

Thus, $11001111_2 = CF_{16}$

 (b) Grouping bits in fours from the right gives: 0001 1001 1110 and assigning hexadecimal symbols to each group gives: 1 9 E from Table 5.2

Thus, $110011110_2 = 19E_{16}$

Problem 18. Convert the following hexadecimal numbers into their binary equivalents: (a) $3F_{16}$ (b) $A6_{16}$

 (a) Spacing out hexadecimal digits gives: 3 F and converting each into binary gives: 0011 1111 from Table 5.2

Thus,
$$3F_{16} = 111111_2$$