RESEARCH METHODOLOGY

LECTURE-8

MEASUREMENT IN RESEARCH

In our daily life we are said to measure when we use some yardstick to determine weight, height, or some other feature of a physical object. We also measure when we judge how well we like a song, a painting or the personalities of our friends. We, thus, measure physical objects as well as abstract concepts. Measurement is a relatively complex and demanding task, specially so when it concerns qualitative or abstract phenomena. By measurement we mean the process of assigning numbers to objects or observations, the level of measurement being a function of the rules under which the numbers are assigned

LEVELS OF MEASUREMENT / MEASUREMENT SCALES

Levels of measurement, also called scales of measurement, how precisely variables are recorded. In scientific research, a variable is anything that can take on different values across your data set (e.g., height or test scores).

There are 4 levels of measurement:

Nominal: the data can only be categorized Ordinal: the data can be categorized and ranked Interval: the data can be categorized, ranked, and evenly spaced Ratio: the data can be categorized, ranked, evenly spaced, and has a natural zero.

Depending on the level of measurement of the variable, what you can do to analyze your data may be limited. There is a hierarchy in the complexity and precision of the level of measurement, from low (nominal) to high (ratio).

Nominal, ordinal, interval, and ratio data going from lowest to highest, the 4 levels of measurement are cumulative. This means that they each take on the properties of lower levels and add new properties.

Nominal scale:

Nominal scale is simply a system of assigning number symbols to events in order to label them. The usual example of this is the assignment of numbers of basketball players in

SWETA SAXENA

order to identify them. Such numbers cannot be considered to be associated with an ordered scale for their order is of no consequence; the numbers are just convenient labels for the particular class of events and as such have no quantitative value.

Nominal scales provide convenient ways of keeping track of people, objects and events. One cannot do much with the numbers involved. For example, one cannot usefully average the numbers on the back of a group of football players and come up with a meaningful value. Neither can one usefully compare the numbers assigned to one group with the numbers assigned to another.

Ordinal scale:

The lowest level of the ordered scale that is commonly used is the ordinal scale. The ordinal scale places events in order, but there is no attempt to make the intervals of the scale equal in terms of some rule. Rank orders represent ordinal scales and are frequently used in research relating to qualitative phenomena. A student's rank in his graduation class involves the use of an ordinal scale. One has to be very careful in making statement about scores based on ordinal scales. For instance, if Ram's position in his class is 10 and Mohan's position is 40, it cannot be said that Ram's position is four times as good as that of Mohan. The statement would make no sense at all. Ordinal scales only permit the ranking of items from highest to lowest. Ordinal measures have no absolute values, and the real differences between adjacent ranks may not be equal. All that can be said is that one person is higher or lower on the scale than another, but more precise comparisons cannot be made. Thus, the use of an ordinal scale implies a statement of 'greater than' or 'less than' (an equality statement is also acceptable) without our being able to state how much greater or less.

Interval scale:

In the case of interval scale, the intervals are adjusted in terms of some rule that has been established as a basis for making the units equal. Interval scales can have an arbitrary zero, but it is not possible to determine for them what may be called an absolute zero or the unique origin. The primary limitation of the interval scale is the lack of a true zero; it does not have the capacity to measure the complete absence of a trait or characteristic. The Fahrenheit scale is an example of an interval scale and shows similarities in what one can and cannot do with it. One can say that an increase in temperature from 30° to 40° involves the same increase in temperature as an increase from 60° to 70°, but one cannot say that the temperature of 60° is twice as warm as the temperature of 30° because both numbers are dependent on the fact that the zero on the scale is set arbitrarily at the temperature of the freezing point of water. The ratio of the two temperatures, 30° and 60°, means nothing

SWETA SAXENA

because zero is an arbitrary point. Interval scales provide more powerful measurement than ordinal scales for interval scale also incorporates the concept of equality of interval. As such more powerful statistical measures can be used with interval scales.

Ratio scale:

Ratio scales have an absolute or true zero of measurement. The term 'absolute zero' is not as precise as it was once believed to be. We can conceive of an absolute zero of length and similarly we can conceive of an absolute zero of time. For example, the zero point on a centimeter scale indicates the complete absence of length or height. But an absolute zero of temperature is theoretically unobtainable and it remains a concept existing only in the scientist's mind. The number of minor traffic-rule violations and the number of incorrect letters in a page of type script represent scores on ratio scales. Both these scales have absolute zeros and as such all minor traffic violations and all typing errors can be assumed to be equal in significance. With ratio scales involved one can make statements like "Jyoti's" typing performance was twice as good as that of "Reetu." The ratio involved does have significance and facilitates a kind of comparison which is not possible in case of an interval scale.

Ratio scale represents the actual amounts of variables. Measures of physical dimensions such as weight, height, distance, etc. are examples. Generally, all statistical techniques are usable with ratio scales and all manipulations that one can carry out with real numbers can also be carried out with ratio scale values. Multiplication and division can be used with this scale but not with other scales mentioned above. Geometric and harmonic means can be used as measures of central tendency and coefficients of variation may also be calculated.