

www.ramauniversity.ac.in

FACULTY OF ENGINEERING & TECHNOLOGY

Dr. NIHARIKA SINGH Assistant Professor Dept. of Biotechnology **Course: B. Tech Biotechnology Sub Code: BBT-515** Semester: 5th Sub Name: Plant Biotechnology

LECTURE 4

Dr. NIHARIKA SINGH Assistant Professor Dept. of Biotechnology

Element	Function	
Nitrogen (N)	Component of proteins, nucleic acids and some coenzymes	
	Element required in greatest amount	
Potassium (P)	Regulates osmotic potential, principal inorganic cation	
Calcium (Ca)	Cell wall synthesis, membrane function, cell signalling	
Magnesium (Mg)	Enzyme cofactor, component of chlorophyll	
Phosphorus (P)	Component of nucleic acids, energy transfer, component of	
	intermediates in respiration and photosynthesis	
Sulphur (S)	Component of some amino acids (methionine, cysteine) and some	
	cofactors	
Chlorine (Cl)	Required for photosynthesis	
Iron (Fe)	Electron transfer as a component of cytochromes	
Manganese (Mn)	Enzyme cofactor	
Cobalt (Co)	Component of some vitamins	
Copper (Cu)	Enzyme cofactor, electron-transfer reactions	
Zinc (Zn)	Enzyme cofactor, chlorophyll biosynthesis	
Molybdenum (Mo)	Enzyme cofactor, component of nitrate reductase	

COMPOSITION OF COMMONLY USED NUTRIENT MEDIA

Murashige & Skoog Medium (MS)	APM100	APM1005/APM5005	
Jse	Calcium chloride anhydrous	332.1	
Aurashige & Skoog Medium (MS) is used for micropropagation, organ cultu	and the second	1806	
allus culture and cell suspension culture Summary	Potassium phosphate monobasic Microelements	170.0	
	Manganese sulphate. H ₂ O	16.9	
Aurashige & Skoog Medium (MS) is established by Murashige & Skoog (196	62) Boric Acid	6.2	
or in vitro callus culture of Nicotiana tabacum (family- Solanaceae).	Potassium iodide	0.8	
Principle	Molybdic acid (sodium salt).2H ₂ O	0.2	
Aurashige & Skoog Medium (MS) provides all essential Macroelemer	nts, Zinc sulphate.7H ₂ O	8.6	
Aicroelements, & Vitamins for the growth of plant cell, tissue and organ cult	ure Copper sulphate.5H,0	0.0	
n vitro. Medium with high concentration of salts is used for cultivating plant c	ell, Cobalt chloride. 6H ₂ O	0.0	
issue and organ culture.	Ferrous sulphate.7H,0	27.8	
facroelements :	Na ₂ .EDTA	37.3	
n this medium nitrogen is supplied as ammonium and nitrate ions. This mixt	Ure Vitamins	100.0	
f cation and anion balances the pH of the medium. Also plays a important role	e in Thiamine HCL	100.0 0.1	
lant growth. Potassium dihydrogen phosphate serves as a source of phosphate	e in Pyridoxine HCL	0.5	
nedium.	Nicotinic acid (Free acid)	0.5	
licroelements:	Amino Acid	0.5	
oron, Managanese, molybdenum, copper, iron and zinc plays a vital catal		2.0	
	Carbohydrate	(74747) (74747)	
ole in plant metabolism. Boron plays a key role in carbohydrate metabolism	SUCIOSE	30000.0	
lant cells.	Buffering Agent	500.0	
/itamins:	MES (Free acid)	500.0	
hiamine, pyridoxin and nicotinic acid content had been increased in the medi	um Plant Growth Regulators	5.0	
hich have a stimulatory effect.	6-Benzyl amino purine(BAP) Gelling Agent	5.0	
mino acid:	Agar	8000.0	
he medium contains increased concentration of glycine.	Storage	0000.0	
ormula	Store at 2-8°C and prepared medium at 2-8°C.		
ngredients in mg per liter	ShelfLife		
Macroelements Intersium nitrate 1900	Use before expiry date as mentioned on the label.		
mmonium sulphate 1650		15 173 107	

BM Medium

Plant growth regulators: 6-Benzyl amino purine(BAP) induces shoot proliferation. Formula Ingredients in Grams/Litre Macroelements Potassium nitrate 2830.00 Ammonium sulphate 463.00 Calcium chloride anhydrous 125.33 Magnesium sulphate 90.37 Potassium phosphate monobasic 400.00 Microelements Manganese sulphate.H,O 3.33 Boric Acid 1.60 Potassium iodide 0.80 Zinc sulphate.7H₂O 1.50 27.80 Ferrous sulphate.7H₂O Na, EDTA 37.26 Vitamins Thiomine HCL 1.00 Pyridoxine HCL 0.50 Nicotinic acid (Free acid) 0.50 Amino acid Glycine (free base) 2.00 Storage Store at 2-8°C and prepared medium at 2-8°C. Shelf Life Use before expiry date as mentioned on the label. Reference: Chu C.C., et. al., 1975. Scientia Sinic., 18, 659-668.

APM1002/APM5002

USE

BM Media is used for seed culture and micropropagation of orchids.

Summary

Van waes, (1986) has developed BM medium for in vitro cultivation of Protocorms from orchid seeds.

Principle

BM medium provides all essential Macroelements, Microelements, Vitamins, Amino acid & Plant growth regulators for the growth of Orchid in vitro. This medium is especially suitable for terrestrial orchids.

Macroelements :

Potassium dihydrogen phosphate serves as a source of phosphate. This medium lacks in inorganic nitrogen.

Microelements:

Zinc and boron content in the medium is increased to provide proper nourishment to developing protocomes.

Vitamins:

Thiamine content had been increased (0.5mg/l) in the medium. It is a most important element in carbohydrte metabolism and some amino acids biosynthesis. Biotin and folic acid along with other vitamins facilitates in vitro development of Protocorm.

Amino acid:

Glycine and glutamine serve as reduced nitrogen source. Carbohydrte:

Sucrose serves as a carbon source.

Organic supplements:

Casein hydrolysate used as a supplement, which is a sources of free amino acid.

Selection of a Suitable Medium:

In order to select a suitable medium for a particular plant culture system, it is customary to start with a known medium (e.g. MS medium, B5 medium) and then develop a new medium with the desired characteristics. Among the constituents of a medium, growth regulators (auxins, cytokinins) are highly variable depending on the culture system. In practice, 3-5 different concentrations of growth regulators in different combinations are used and the best among them are selected. For the selection of appropriate concentrations of minerals and organic constituents in the medium, similar approach referred above, can be employed.

PLANT HORMONES

• Naturally occurring organic compounds other than nutrients

produced by plants that control or regulate germination, growth,

metabolism, or other physiological activities.

- Also called phytohormone and recently called growth bioregulators.
- Relatively low molecular weight.

QUIZ

