

www.ramauniversity.ac.in

FACULTY OF ENGINEERING & TECHNOLOGY

Dr. NIHARIKA SINGH Assistant Professor Dept. of Biotechnology **Course: B. Tech Biotechnology Sub Code: BBT-515** Semester: 5th Sub Name: Plant Biotechnology

LECTURE 3

Dr. NIHARIKA SINGH Assistant Professor Dept. of Biotechnology

ORGANOGENESIS & SOMATIC EMBRYOGENESIS

ORGANOGENESIS	SOMATIC EMBRYOGENESIS
The series of organized integrated processes, which transforms an amorphous mass of cells into a complete organ in the developing embryo.	An artificial process in which a plant or embryo is derived from a single somatic cell.
The process, which generates plant organs including shoot and root from vegetative tissue.	The process, which generates embryonic callus from vegetative tissue.
A natural process occurs in nature and it can also be induced artificially.	An artificial process occurs under laboratory conditions.

ORGANOGENESIS	SOMATIC EMBRYOGENESIS
Proceeds through two hormone signals to induce shoot and then the root separately.	Proceeds through a single hormone signal.
Results in the formation of a complete plantlet with shoot and root.	Results in the formation of a somatic embryo.
The shoots and roots have a strong connection with their maternal tissue.	The somatic embryos have no vascular connection with the maternal callus.

Introduction

- Soma" mean the somatic cells and "clones" means the generations.
- The term Somaclonal Variation was first coined by Larkin and Scrowcroft in 1981. (Larkin,1981).
- According to Larkin and Scowcroft, "Somaclonal variation is the genetic variability which is regenerated during tissue culture" or plant variants derived from any form of cell or tissue cultures. (Larkin,1981)
- Genetic variations in plants that have been produced by plant tissue culture and can be detected as phenotypic traits.

Basic Features of Somaclonal Variations

- Variations in number and structure of chromosomes are commonly observed.
- Regenerated plants with altered chromosomal changes often show changes in leaf shape and colour, growth rate and habit, and sexual fertility.
- ✓ It is generally heritable mutations and persist in plant population even after plantation into the field.

Mechanism of Somaclonal Variations

1. Genetic (Heritable Variations)

- Pre-existing variations in the somatic cells of explant
- Caused by mutations and other DNA changes
- Occur at high frequency

2. Epigenetic (Non-heritable Variations)

- Variations generated during tissue culture Caused by temporary phenotypic changes
- Occur at low frequency

QUIZ

