

FACULTY OF ENGINEERING \&TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

- 3.This mixture is kept in a PCR equipment and is subjected to repeated cycles of DNA denaturation-renaturation-DNA replication.
- 4.During this process, the decaoligonucleotide will pair with the homologous sequence present at different locations in the DNA.
- 5.DNA replication extend the decaoligonucleotide and copy the sequence continuous with the sequence with which the selected oligonucleotide has paired.
- 6.The repeated cycles of denaturation-renaturationDNA replication will amplify this sequence of DNA.
- 7.Amplification will takes place only of those regions of the genome that has the sequence complementary to the decaoligonucleotide at their both ends.
- 8. After several cycles of amplification the DNA is subjected to gel electrophoresis.
Initial denaturation at $94^{\circ} \mathrm{C}$ for 10 min .
Denaturation at $94^{\circ} \mathrm{C}$ for 1 min . Annealing at 37$45^{\circ} \mathrm{C}$ for 1 min . Extension at $72^{\circ} \mathrm{C}$ for 1 min .

Final extension at $72^{\circ} \mathrm{C}$ for 10 min . Cooling at $4^{\circ} \mathrm{C}$.

- 9.The amplified DNA will form a distinct band. it is detected by ethidium bromide staining and visible fluorescence's under U.V. light

RAPD

