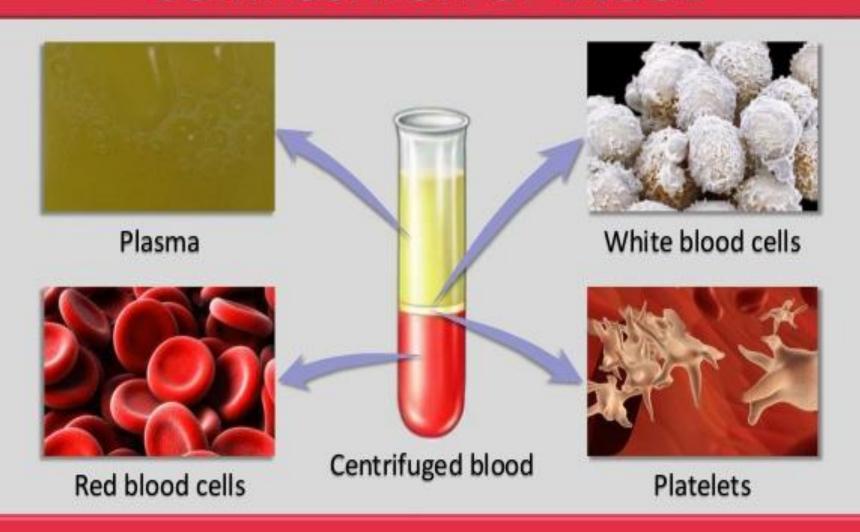
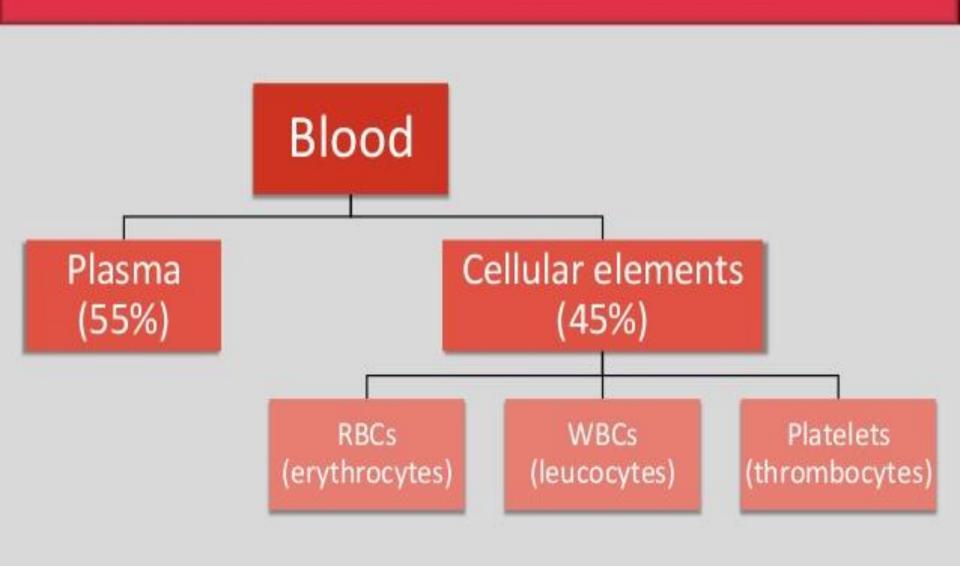


FACULTY OF ENGINEERING &TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

BLOOD

Blood is a special type of fluid connective tissue derived from mesoderm.

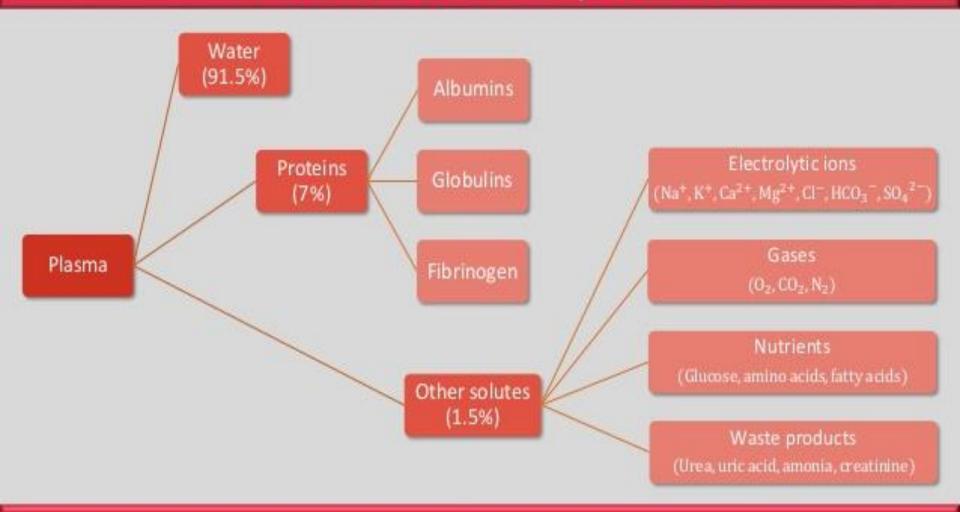

The branch of science concerned with the study of blood, blood-forming tissues, and the disorders associated with them is called haematology.


(Gk: haeme - blood and logos - study)

	n				`	IFC A			0	\sim	
ν	ĸı	8 11	$\mathbf{\nu}$	H	₹	IES (ĸ		81	
	IV.			LI	1		\cup	יט		\cup	J

Colour	Bright red in arteries & dark red in veins			
Mass	8 % of the body mass			
рН	Slightly alkaline (pH = 7.35 – 7.45)			
Taste	Salty			
Temperature	38° C (100.4° F)			
Viscosity	3 – 4 times more viscous than water			
Volume	5 – 6 litre			

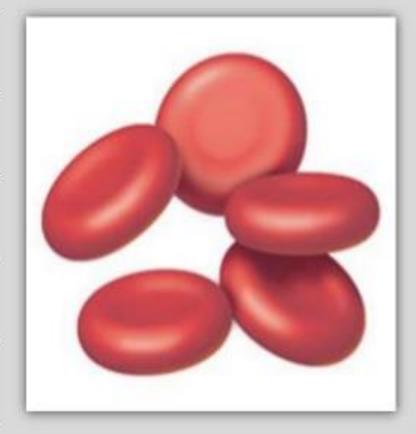
COMPOSITION OF BLOOD



Plasma

Plasma is a pale yellow coloured liquid component of a blood that holds the cellular elements of blood in suspension.

Constituents of plasma



Functions of plasma

Constituent	Function		
Water	Absorbs, transports and releases heat		
Albumins	Osmotic balance		
Globulins	Defense mechanism		
Fibrinogen	Blood clotting		
Electrolytic ions	pH buffering		

Red blood cells

Shape	Circular biconcave non-nucleated	
Size	Diameter = 7 – 8 μm Thickness = 2.5 μm	
Colour	Red (haemoglobin pigment)	
Count	Adult male = 5.4 million RBCs/μL Adult female = 4.8 million RBCs/μL	
Life span	120 days	

Erythropoiesis

The production of RBCs is known as erythropoiesis.

Adult	Red bone marrow of long bones (hip bone, breast bone & ribs) Bone marrow of all the bones		
Child (upto 5 year)			
Foetus	Liver & spleen		

- Increase in number of RBCs is known as polycythemia.
- Decrease in number of RBCs is known as erythropenia

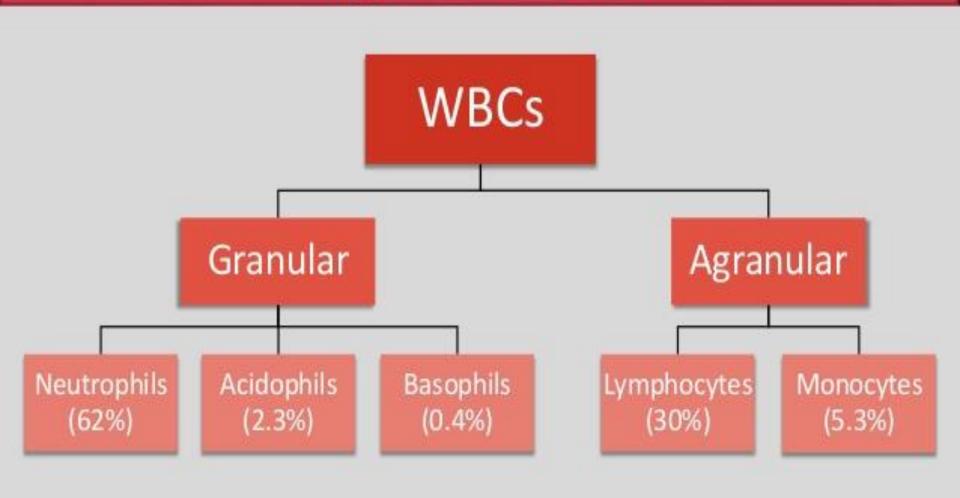
Functions of RBCs

- Transport O₂ from lungs to tissues
- Transport CO₂ from tissues to lungs

- Normal blood contains 13 15 g of Hb per 100 ml of blood
- One RBC contains about 250 million molecules of Hb
- Each molecule of Hb carries four molecules of oxygen

White blood cells

Shape	Amoeboid nucleated
Size	12 – 15 μm
Colour	Colourless & translucent
Count	5000 – 10000 WBCs/μL
Life span	10 – 13 days


Leucopoiesis

The production of WBCs is known as leucopoiesis.

Adult	Liver, spleen, tonsils, bone marrow
Foetus	Liver, spleen

- Increase in number of WBCs is known as leucocytosis
- Decrease in number of WBCs is known as leucopenia
- Pathological increase in number of WBCs is known as leukemia (blood cancer)

Types of WBCs

Granular WBCs

Туре	Appearance	Features	Functions	Location produced
Neutrophils		Nucleus with 3-4 lobes Stain with neutral dye (hematoxylin)	Destroy bacteria by phagocytosis	Bone marrow
Acidophils (eosinophils)		Nucleus with 2 lobes Stain with acidic dye (eosin)	Combat the effect of histamine in allergic reactions	Bone marrow
Basophils		Nucleus with indistinct lobes Stain with basic dye (methylene blue)	Liberate heparin and histamine in allergic reactions to intensify inflammatory response	Bone marrow

Agranular WBCs

Туре	Appearance	Features	Functions	Location produced
Lymphocyte		Smallest of WBCs Large round nucleus	Produce antibodies	Bone marrow, spleen, tonsils
Monocyte		Largest of WBCs Large kidney shaped nucleus	Ingest microorganisms	Bone marrow

Platelets

Shape	Circular biconvex non-nucleated
Size	2 – 4 μm
Count	1,50,000 – 4,00,000 platelets/μL
Life span	5 – 9 days
Function	Blood clotting

Thrombopoiesis

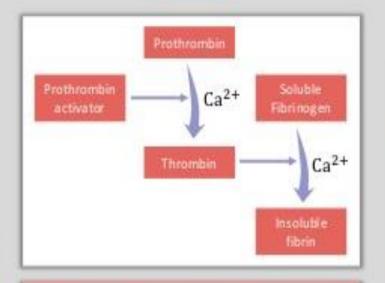
The production of platelets is known as thrombopoiesis.


Platelets are the fragments of large cells called megakaryocytes that remain in the bone marrow.

- Increase in number of platelets is known as thrombocytosis.
- Decrease in number of platelets is known as thrombocytopenia

Blood clotting

Blood clotting is the process in which blood looses its fluidity and becomes a jelly like mass few minutes after it is shed out.


Process of blood clotting

 Blood vessel is punctured

Platelets form a plug

 Platelets & damaged tissue cells release prothrombin activator, which initiates a cascade of enzymatic reactions

 Fibrin thread forms & trap red blood cells

Anticoagulant

A substance which prevents the coagulation of blood is called as anticoagulant.

Heparin is a natural anticoagulant present in the blood.

- If blood clots too easily, the result can be thrombosis clotting in an undamaged blood vessel.
- If the blood takes too long to clot, haemorrhage can occur.