

www.ramauniversity.ac.in

FACULTY OF ENGINEERING & TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

Starch, Glycogen and dextrins (Large polysaccharide molecules)

- Shorter duration of food in mouth.
- Thus it is incomplete digestion of starch or glycogen in the mouth

Digestion in the Stomach

There is no enzyme to break the glycosidic bonds in gastrictjuice.

 However, HCl present in the stomach causes hydrolysis of sucrose to fructose and glucose.

HCl HCl UNIVERSITY Sucrose Fructose + Glucose Fructose + Glucose

Digestion in Duodenum

 Food bolus reaches the duodenum from the stomach where it meets the pancreatic juice.

 Pancreatic juice contains a carbohydrate splitting enzyme,

pancreatic amylase

<u>(amylopsin)</u> similar

to salivary amylase.

Action of pancreatic amylase

- It is an a- Amylase
- Optimum pH=7.1
- Like ptylin, it requires Cl- ionion for itstactivity.
- It hydrolyses $\alpha_{r-1} \rightarrow 4$ glycosidic linkageinkages situated well inside polysaccharide molecules.

 Note: Pancreatic amylase, an isoenzyme of salivary amylase, differs only in the optimum pH of action. Both the enzymes require Chloride ions for their actions (Ion activated enzymes).

Reaction catalyzed by pancreatic amylase

Starch/Glycogen

Pancreatic Amylase Amylase

Maltose/ Isomaltose

Maltose/ Isomaltose Dextrins and oligosaccharides

oligosaccharides

