

FACULTY OF ENGINEERING & TECHNOLOGY

Introduction

- •Epistasis is the phenomenon where the effect of one gene is dependent on the presence of one or more genes.
- Originally the term meant that the phenotypic effect of one gene is masked by a different gene.

In epistasis, the gene that does the masking is called an epistatic gene; the gene whose effect is masked is a hypostatic gene. Epistatic genes may be recessive or dominant in their effects.

Types of Epistasis

Dominance: It Involves intra-allelic gene interaction. One allele hides the effect of other allele at the same gene pair

One gene hides the effect of other gene at different gene loci .

Dominant Epistasis

Dominant allele (eg.,A) of one gene hides the effect of allele of another gene (eg., B) and expresses itself phenotypically.

- The B allele (hypostatic) will be expressed only when gene locus A contains two recessive (aa) alleles.
- Thus, the genotype AA BB or Aa Bb and AA bb or Aa bb produce thesame phenotype
- genotype aa BB or aa Bb and aa bb produce two additional phenotype.
- This type of dominant epistasis modifies the classical ratio of 9:3:3:1
 into 12:3:1

Epistatic alleles	Hypostatic alleles	Phenotypic Expression
aa	bb	b
aa	BB, Bb	В
AA, Aa	Bb, Bb, bb	A

Example:

- Studied in summer squash (Cucurbita pepo)
- Common fruit colors-white, yellow & green
- White (W) is dominant over colored squash
- Yellow (Y) is dominant over green squash
- Pure breeding white fruited variety is crossed with the double recessive green variety,F1 hybrids are all white
- When the hybrids are selfed-white, yellow &green fruited plants arise in the ratio of 12:3:1

The effect of dominant gene 'Y' is masked by the dominant gene 'W' (epistatic gene)

F1 WwYy (white) (selfed)

F2 White:Yellow:Green

12:3:1

3/12	WY	Wy	wY	wy
WY	WWY Y	WWY y	WwY Y	Ww Yy
Wy	WWY y	WWyy	WwYy	Wwy y
wY	WwY Y	WwYy	wwYY	wwY y
wy	WwYy	Wwyy	wwYy	wwy y

Recessive epistasis (Supplementary interaction)

• Recessive allele (aa) of one gene locus hides the effect of another gene locus (BB, Bb or bb) and expresses itself phenotypically.

• The alleles of B locus express themselves only when epistatic locus has dominant alleles (eg.,AA or Aa).

This will modify the ratio 9:3:3:1 to ratio 9:3:4

Epistatic	Hypostatic	Phenotypic	
alleles	alleles	Expression	
aa	BB, Bb, bb	a	
AA, Aa	BB, Bb	В	
AA, Aa	bb	b	

Example:

• In horses, brown coat color (B) is dominant over tan (b).

• However, how that gene is expressed in the phenotype is dependent on a second gene that controls the deposition of pigment in hair.

• The dominant gene (C) codes for the presence of pigment in hair, whereas the recessive gene (c) codes for the absence of pigment.

