

www.ramauniversity.ac.in

FACULTY OF ENGINEERING & TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

□ Helicases separate double stranded DNA to single stranded DNA during replication and the energy derived from ATP hydrolysis .

□ Helicases unwind the DNA duplex just ahead of the replication fork at a rate of 1000 bp/s. Two DNA Helicases unwind DNA at a replication fork moving in opposite directions ,one on the leading strand template and another on the lagging strand template.

Functions of Helicases:

- 1. DNA unwinding occurs during replication. Helicases in conjunction with topoisomerase relieve torsional stain .
- 2. It functions in homologous recombination, nucleotide excision repair, transcription termination and conjugation.

SSB Protein

- Single Stranded binding proteins(SSB): also known as DNA helix destabilizing proteins or Single stranded DNA binding proteins. They have no enzyme activity.
- Functions of SSB Proteins during DNA Replication:
- 1. Keep two strands of DNA separate(separated by helicases).
- 2. Bind tightly in a co-operative manner to single stranded DNA (separated strands) and makes it available as a template for DNA Replication/ synthesis.
- 3. Stabilize DNA in a single strand state and prevent base pairing.
- 4. Protect single stranded DNA degradation by nucleases.

(B)

- ★ As the leading strand is being synthesized, corresponding portion of Lagging strand is looped through a □ clamp enabling coordinate synthesis of both strands.
- ✤ Both core complex and □ clamp dissociate after synthesis of Okazaki fragments and again associate the next Okazaki fragment .

Positive supercoils of DNA	Negative supercoils of DNA(
are formed when the DNA	are formed when the DNA
molecule is twisted in the	molecule is twisted in the
same direction as the right	opposite direction as the
handed helix of B-form DNA	right handed helix of B-form
about its axis.	DNA about its axis.
Introduced by topoisomerase	Introduced by topoisomerase
I and relaxed by	II and relaxed by
topoisomerase II.	topoisomerase I.
The amount /activities of enzymes topoisomerase type I	
and II are regulated to maintain appropriate degree of	

and II are regulated to maintain appropriate degree of negative supercoiling.

- Super coils are formed as double helix separates from one side & replication proceed at the other side (twisted ropes pooled apart)
- DNA Topoisomerase Type I –nuclease activity –cuts single strand (to overcome problem of supercoiling) & reseal the strand by ligase activity.
- DNA Topoisomerase Type II(called DNA Gyrase in prokaryotes): cuts both strands (to overcome problem of supercoiling) & reseal the strands by Ligase activity. It introduces negative supercoils to DNA using free energy from ATP hydrolysis.

Cancer treatment

- Camphotherin –an inhibitor of DNA Topoisomerase Type I
- * Amasacrime & Etoposide- inhibitors of DNA Topoisomerase TYPE II

Primase

