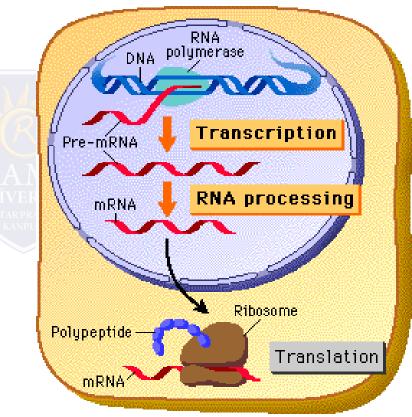

www.ramauniversity.ac.in

FACULTY OF ENGINEERING & TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

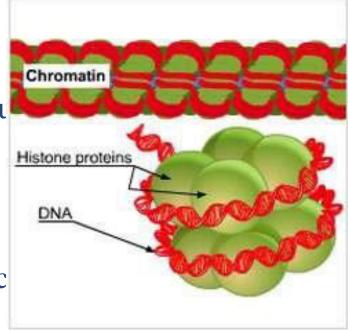
- The general process of transcription can be applied to both prokaryotic cells and eukaryotic cells.
- The basic biochemistry for each is the same; however, the specific mechanisms and regulation of transcription differ between prokaryotes and eukaryotes.
- Transcription of eukaryotic genes is far more a complicated process than prokaryotes.


1) Location

- •In prokaryotes (bacteria), transcription occurs in the cytoplasm.
- •Translation of the mRNA into proteins also occurs in the cytoplasm

Prokaryotic versus Eukaryotic Transcription

• In eukaryotes, transcription occurs in the cell's nucleus, mRNA then moves to the cytoplasm for translation.


2) Genome size

- •The genome size is much larger in eukaryotes.
- Greater specificity is needed for the transcription of eukaryotic genes

- DNA in prokaryotes is much more accessible to RNA polymerase than DNA in eukaryotes.
- Eukaryotic DNA is wrapped around proteins called histones to form structu called nucleosomes
- Eukaryotic DNA is packed to form chromatin .
- While RNA polymerase interacts direc with prokaryotic DNA, other proteins mediate the interaction between RNA polymerase and

ĎNA^{Bi}iocnhemeiustrkyFaorr^Myeodictse-LSecture Notes

RNA polymerases

•There are three distinct classes of RNA polymerases in eukaryotic cells. All are large enzymes with multiple subunits. Each class of RNA polymerase recognizes particular types of genes.

•RNA polymerase I- Synthesizes the precursor of the large ribosomal RNAs (28S, 18S and 5.8S).

•RNA polymerase II - Synthesizes the precursors of messenger RNA and small nuclear RNAs(snRNAs).

•RNA polymerase III- Synthesizes small

RNA, including t RNAs, small 5S RNA and some snRNAs.