

FACULTY OF ENGINEERING AND TECHNOLOGY MEC-022 Lecture - 12

MOSFET Analysis

- Depending on the type of application, a MOSFET may be put into one of three regions of operation by setting its operating Q-point.
- For binary logic application the transistor acts like an "on-off" switch and the Q-point is set in ether cut-off region ("off") or in the triode region ("on") for the output characteristic or at the ends of transfer characteristic.
- For amplifier application, the Q-point is set in the saturation region for the output characteristic or in the middle (high) point of the transfer characteristic

MOSFET Analysis: logic inverter example

For the low values of input v_{GS} (binary 0) the

MOSFET is **off**, i_D =0 and v_{DS} = v_{out} = 5V \rightarrow binary

MOSFET Analysis: logic inverter example

• For $v_{GS} = 5V$ (binary 1) the MOSFET is on, i_D is high, and the output voltage $v_{DS} = v_{out} = 0.65V \rightarrow$ binary 0.

MOSFET Analysis: amplifier example

• For the amplifier, the Q-point created by $v_{GS} = 2.5V$ is located at the high slope region of transfer characteristic and at the

saturation region of the 2.5V curve.

Thank You!