

www.ramauniversity.ac.in

FACULTY OF ENGINEERING AND TECHNOLOGY MEC-022 Lecture - 06

NMOS Transistor: Qualitative Behavior @ v_{DS} =0

- V_{GS} << V_{TN} (V_{GS} <0): Two back to back reverse biased pn junctions btw S and D. Only small leakage current flows.
- V_{GS}<V_{TN} (V_{GS}>0): Depletion region formed under gate merges with source and drain depletion regions. No current flows between source and drain.
- V_{GS}>V_{TN}: Channel is formed between source and drain by electrons in inversion layer. If V_{DS}>0, finite i_D flows from drain to source.
- $i_B = 0$ and $i_G = 0$.

NMOS Transistor: Qualitative Behavior @ v_{DS} =0

Since the induced inversion layer is formed by electrons, it's called N-channel MOSFET.

Applying a **small** v_{DS} creates a flow of electrons in the induced inversion layer between source and drain - current i_D ($i_D = i_S$, since $i_B=0$ and $i_G=0$).

$$i_D = K_n \left(v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right) v_{DS}$$

for $0 \le v_{DS} \le v_{GS} - V_{TN}$

where

 $K_n = K_n' W/L - the gain factor$ $K_n' = \mu_n C_{ox}'' (A/V^2)$ $C_{ox}'' = \varepsilon_{ox}/T_{ox}$ $\varepsilon_{ox} = \text{oxide permittivity (F/cm)}$ $T_{ox} = \text{oxide thickness (cm)}$

This is the triode region (linear region, ohmic mode).

MOSFET operates like a resistor, controlled by the gate voltage relative to both the source and drain voltages.

N-MOS Transistor: Triode Region (derivation of the source-drain current)

Since currents i_B and i_G both are zero, and there is no path for drain current to escape: $i_S = i_D$.

To find it, we consider the transport of the charge. The linear density of the electron charge at any point in the channel is:

 $Q' = -W C_{ox} "(v_{ox} - V_{TN}) C / \text{ cm for } v_{ox} \ge V_{TN},$ where $C_{ox} " = \varepsilon_{ox} / T_{ox}$ - oxide capacitance per area, ε_{ox} = oxide permittivity(F/cm), T_{ox} = oxide thickness (cm)

The voltage v_{ox} is the function of position x in the channel: $v_{ox} = v_{GS} - v(x)$ For inversion layer to exist, should be $v_{ox} > V_{TN}$, so Q' = 0 until $v_{ox} > V_{TN}$. At the source, $v_{ox} = v_{GS}$ and it decrease to $v_{ox} = v_{GS} - v_{DS}$ at the drain.

The electron drift current is :
$$i(x) = Q'v_x = \left[-WC_{ox}''(v_{ox} - V_{TN})\right] (where $E_x = -\frac{dv(x)}{dx}$$$

Combining everything: $i(x) = -\mu_n C_{ox} "W[v_{GS} - v(x) - V_{TN}] \frac{dv(x)}{dx}$ integrating: $\int_0^L i(x)dx = -\int_0^{v_{DS}} \mu_n C_{ox} "W[v_{GS} - v(x) - V_{TN}] dv(x) \text{ we get}$ $i_D = \mu_n C_{ox} "\frac{W}{L} \left(v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right) v_{DS} = K_n \left(v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right)$ where $K_n = K'_n \frac{W}{L}$, and $K'_n = \mu_n C'_{ox}$ A **triode** is an electronic amplification device having three active electrodes. most commonly it's a vacuum tube with three elements: the filament (cathode), the grid (controlling element), and the plate or anode. The triode vacuum tube was the first electronic amplification device. It's *iv*-characteristics was quite linear.

Lee De Forest "Triode" Audion tube from 1908

N-MOSFET: Triode Region Characteristics

• The expression for i_D is quadratic in v_{DS}

$$i_D = K_n \left(v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right) v_{DS}$$

N-MOSFET: Triode Region Characteristics

• The expression for i_D is quadratic in v_{DS} with max reached at $v_{DS} = v_{GS} - v_{TN} = v_{OV}$

$$i_D = K_n \left(v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right) v_{DS}$$

