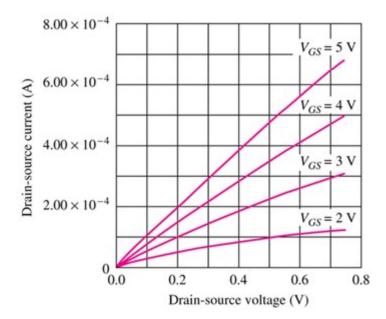


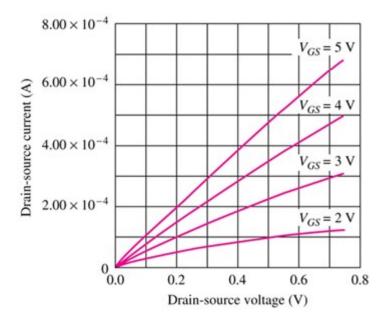
FACULTY OF ENGINEERING AND TECHNOLOGY MEC-022 Lecture - 07

N-MOSFET: Triode Region Characteristics


- The expression for i_D is quadratic in v_{DS} with max reached at $v_{DS} = v_{GS} v_{TN} = v_{OV}$
- For small $v_{DS} << v_{GS} v_{TN}$, the characteristics i_D vs. v_{DS} appear to be linear (triode region, linear)

N-MOSFET: Triode Region Characteristics

- The expression for i_D is quadratic in v_{DS} with max reached at $v_{DS} = v_{GS} v_{TN} = v_{OV}$
- For small $v_{DS} << v_{GS} v_{TN}$, the characteristics i_D vs. v_{DS} appear to be linear (triode region, linear)



Under this condition, MOSFET behaves like a gate-source voltage-controlled resistor between source and drain,

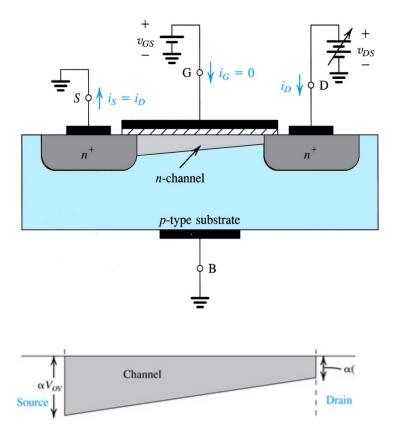
$$i_D = K_n \left(v_{GS} - V_{TN} \right) v_{DS} = \frac{1}{R_{on}} \cdot v_{DS}$$

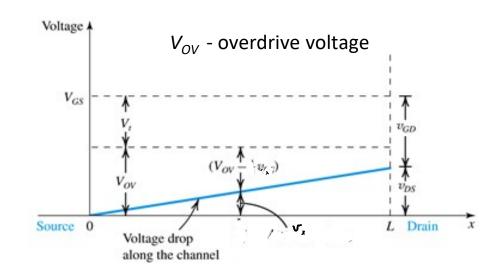
N-MOSFET: Triode Region Characteristics

- The expression for i_D is quadratic in v_{DS} with max reached at $v_{DS} = v_{GS} v_{TN} = v_{OV}$
- For small v_{DS} << v_{GS} v_{TN}, the characteristics i_D vs. v_{DS} appear to be linear (triode region, linear)

Under this condition, MOSFET behaves like a gate-source voltage-controlled resistor between source and drain,

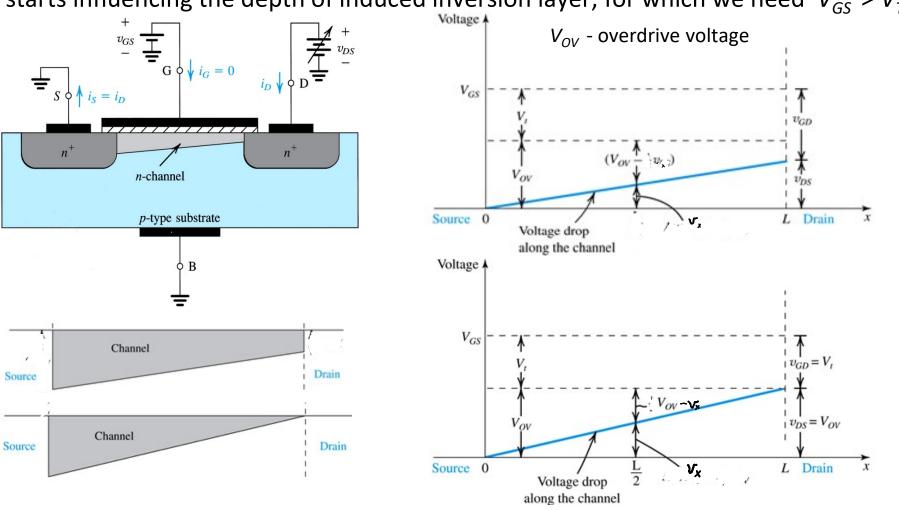
$$i_D = K_n \left(v_{GS} - V_{TN} \right) v_{DS} = \frac{1}{R_{on}} \cdot v_{DS}$$

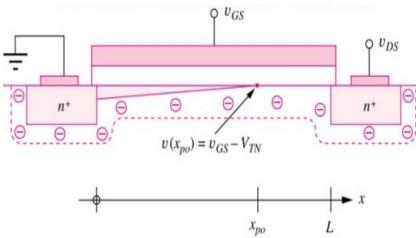

where **on-resistance**:


$$R_{on} = \frac{1}{K_n \frac{W}{L} \left(V_{GS} - V_{TN} - V_{DS} \right)} \Big|_{V_{DS} \to 0}$$

$$= \frac{1}{K_n \frac{W}{L} \left(V_{GS} - V_{TN} \right)} = R_{on} (V_{GS})$$

NMOS Transistor: inversion layer change

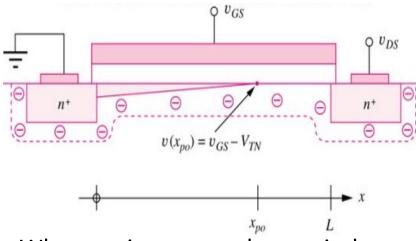

If we increase v_{DS} , and it's no more $v_{DS} << V_{GS} - V_{TN} = V_{OV}$ (triode region limit), it starts influencing the depth of induced inversion layer, for which we need $V_{GS} > V_{TN}$.


NMOS Transistor: inversion layer change

If we increase v_{DS} , and it's no more $v_{DS} << V_{GS} - V_{TN} = V_{OV}$ (triode region limit), it starts influencing the depth of induced inversion layer, for which we need $V_{GS} > V_{TN}$.

 $v_{DS} = V_{OV}$ - pinch-off voltage, saturation region begins

NMOS Transistor: Saturation Region



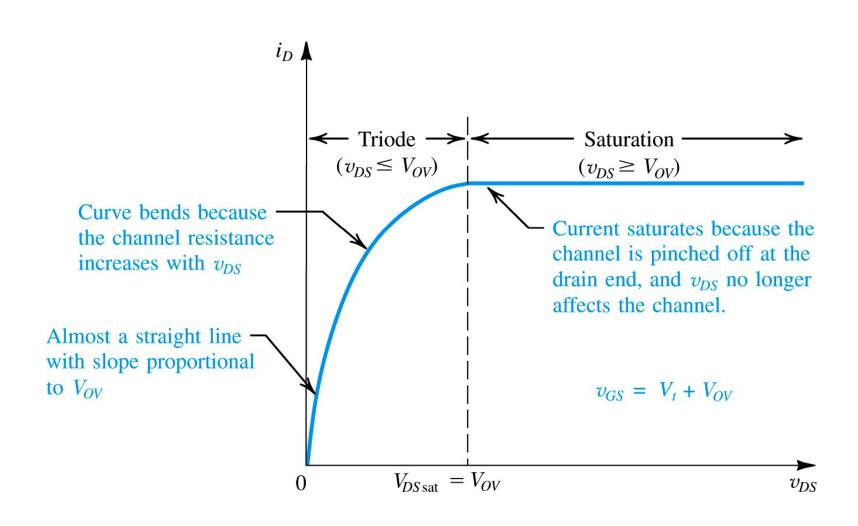
- When v_{DS} increases above triode region limit, channel region akmost disappears, MOSFET also said to be pinched-off.
- Current saturates at (almost) constant value, independent of v_{DS} .

 $v_{DSAT}^{=v}GS^{-V}TN$ is also called **saturation** or pinch-off voltage.

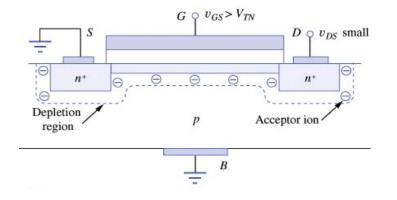
What is the current in saturation region?

NMOS Transistor: Saturation Region

- When v_{DS} increases above triode region limit, channel region akmost disappears, MOSFET also said to be pinched-off.
- Current saturates at (almost) constant value, independent of v_{DS} .

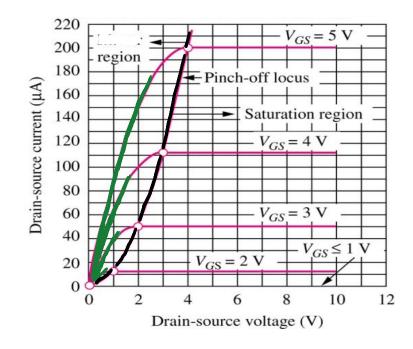

 $v_{DSAT}^{=v}GS^{-V}TN$ is also called **saturation** or pinch-off voltage.

Substituting $v_{DS} = v_{GS} - V_{TN}$ into previous equation for drain current, we get


$$i_D = \frac{K'_n W}{2 L} \left(v_{GS} - V_{TN}\right)^2$$
for $v_{DS} \ge v_{GS} - V_{TN}$

 Saturation region operation mostly used for analog amplification.

NMOS Transistor: *iv*-characteristic



NMOS Transistor: Region Summary

• If $v_{DS} \lt \lt V_{GS} - V_{TN}$ MOSFET is in linear portion of the triode region

Triode

Thank You!