

www.ramauniversity.ac.in

FACULTY OF ENGINEERING AND TECHNOLOGY MEC-022 Lecture - 09

Channel-Length Modulation

- On the previous *iv*-characteristics, the saturation part was horizontal (the current was constant, as v_{DS} increases). However, it's not exactly so.
- As v_{DS} increases above v_{DSAT}, length of depleted channel beyond pinch-off point, ΔL, increases and actual L decreases.
- Since *L* is in denominator of the current expression, it compensate slightly the general increase of resistivity, which normally makes the curve flat.
- As a result, *i_D* increases slightly with *v_{DS}* instead of being constant and we can rewrite equation in the form:

where λ is the channel length modulation parameter, depends on manufacturing and *L*.

Output and Transfer Characteristics of MOSFETS

- A MOSFET has one output variable the drain-source current , that depends on two input variables drain-source voltage and gate-source voltage (V_{GS} is usually is a control variable).
- Two types of iv-curves are used to describe a MOSFET device fully: output (drain) curve (DS current vs. DS voltage for a fixed GS voltage) (the earlier considered characteristics were drain curves)

Output and Transfer Characteristics of MOSFETS

- A MOSFET has one output variable the drain-source current, that depends on two input variables drain-source voltage and gate-source voltage (V_{GS} is usually is a control variable).
- Two types of iv-curves are used to describe a MOSFET device fully: output (drain) curve (DS current vs. DS voltage for a fixed GS voltage) (the earlier considered characteristics were drain curves) transfer curve (DS current vs. GS voltage for a fixed DS voltage, *f.i. sat.*)

So far it was assumed that the source-bulk voltage v_{SB} , is zero, which means that a MOSFET is a three terminal device. Quite often v_{SB} , especially in ICs is not zero.

- Non-zero v_{SB} changes threshold voltage.
- This is called substrate sensitivity and is modeled by

$$V_{TN} = V_{TO} + \gamma \left(\sqrt{v_{SB} + 2\phi_F} - \sqrt{2\phi_F} \right)$$

where

- V_{TO} zero substrate bias for V_{TN} (V)
- $\gamma \text{body-effect parameter } () \mu, \text{ determines}$ the intensity of the body effect
- $2\Phi_{\rm F}$ surface potential parameter (V), typically 0.6V.

NMOS Summary (output characteristics)

PMOS Transistors Structure (Enhancement-Mode)

p-type source and drain regions in *n*-type substrate.

n-type source and drain regions in *p*-type substrate.

