

FACULTY OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering

MEPS102:Strength of Material

Lecture 12

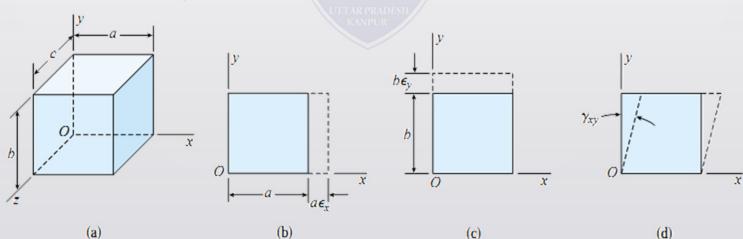
Topic:12. State of Plane Strain Transformation Equations for Plane Strain

Instructor:

Aditya Veer Gautam

Plane Strain

- Consider a small element of material having sides of lengths a, b, and c in the x, y, and z directions, respectively.
- \checkmark If the only deformations are those in the xy plane, then three
- ✓ strain components may exist
 - \checkmark the normal strain ϵ_x in the x direction
 - \checkmark The normal strain ϵ_y in the y direction, and
 - \checkmark The shear strain γ_{xy}

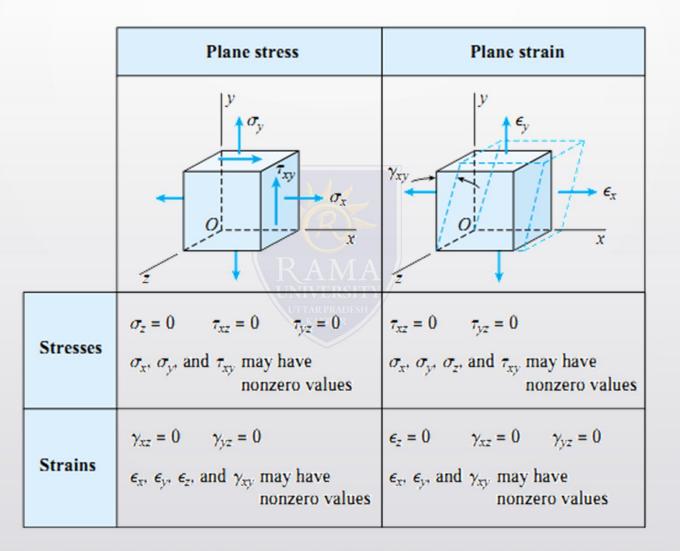


Plane Strain

✓ If the only deformations are those in the **xy** plane, then three strain components may exist— ϵ_x , ϵ_y , γ_{xy} ($\epsilon_z = 0$, $\gamma_{zy} = \gamma_{zx} = 0$) An element of material subjected to these strains (and only these strains) is said to be in a state of plane strain

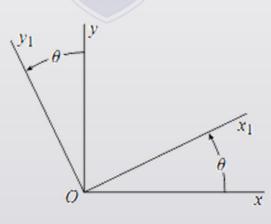
- Under ordinary conditions plane stress and plane strain do not occur simultaneously
- When $\sigma_x = -\sigma_y$ Plane Stress and Plane Strain occur simultaneously
- ✓ the transformation equations for plane stress can also be used for the stresses in plane strain because σ_z does not enter the equations of equilibrium used in derivation
- Similarly the transformation equations for plane strain can also be used for the strains in plane stress

Place Stress Vs Place Strain



Transformation Equation for Plane Strain

- ✓ In the derivation of the transformation equations for plane strain, we will use the coordinate axes shown below.
- ✓ We will assume that the normal strains and the shear strain associated with the xy axes are known.
- ✓ The objectives of our analysis are to determine the normal strain and the shear strain associated with the axes, which are rotated counterclockwise through an angle θ from the xy axes

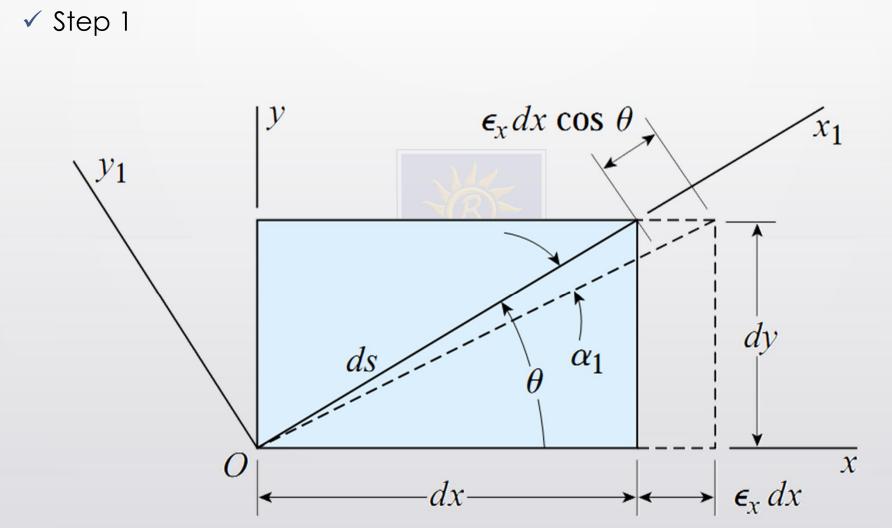


First we will find out Normal strain ϵ_{x_1} .

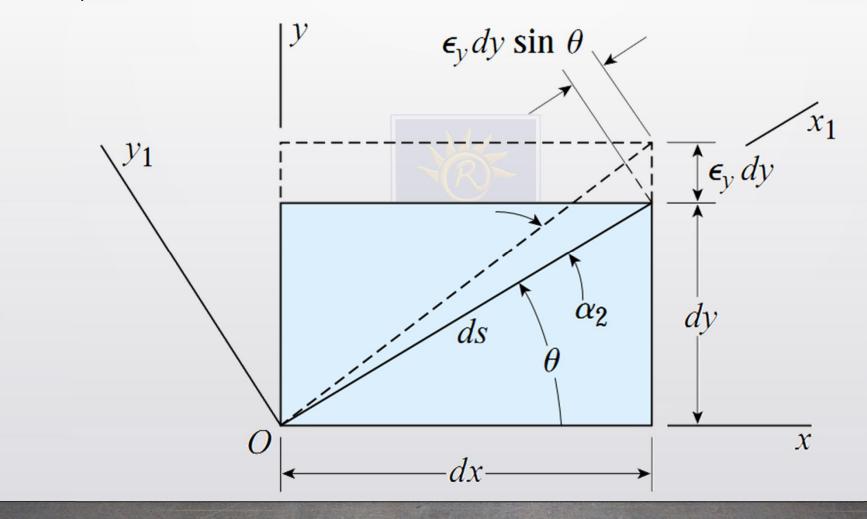
✓ To determine the normal strain ϵ_{x_1} in the x_1 direction, we consider a small element of material selected so that the x_1 axis is along a **diagonal** of the z face of the element and the x and y axes are along the sides of the element

The Procedure required 4 steps

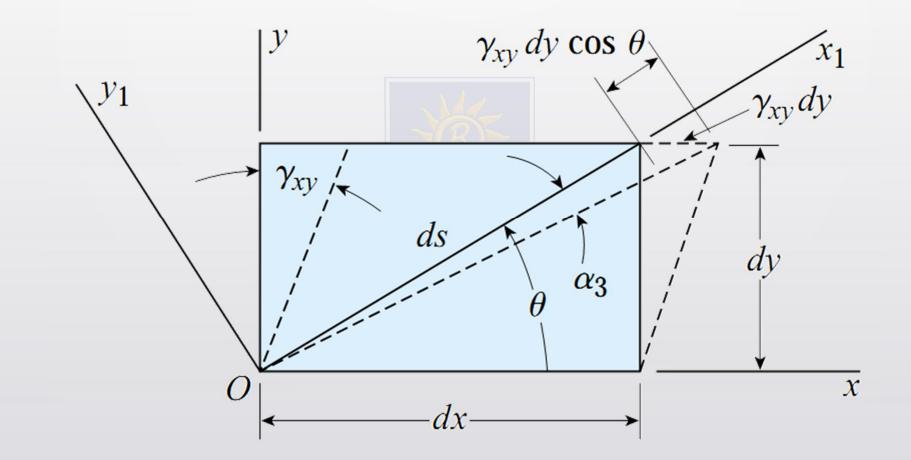
- 1. Find out the elongation in diagonal due o ϵ_x
- 2. Find out the elongation in diagonal due o ϵ_y
- 3. Find out the elongation in diagonal due o γ_{xy}
- 4. Get the total elongation to get the strain along diagonal



✓ Step 2



✓ Step 3



✓ Step 4

The total increase Δd in the length of the diagonal is the sum of the preceding three expressions; thus,

$$\Delta d = \epsilon_x dx \cos \theta + \epsilon_y dy \sin \theta + \gamma_{xy} dy \cos \theta$$

therefore strain ϵ_{x_1}

$$\epsilon_{x_1} = \frac{\Delta d}{ds} = \epsilon_x \frac{dx}{ds} \cos \theta + \epsilon_y \frac{dy}{ds} \sin \theta + \gamma_{xy} \frac{dy}{ds} \cos \theta$$

but

$$\frac{dx}{ds} = \cos\theta , \frac{dy}{ds} = \sin\theta$$

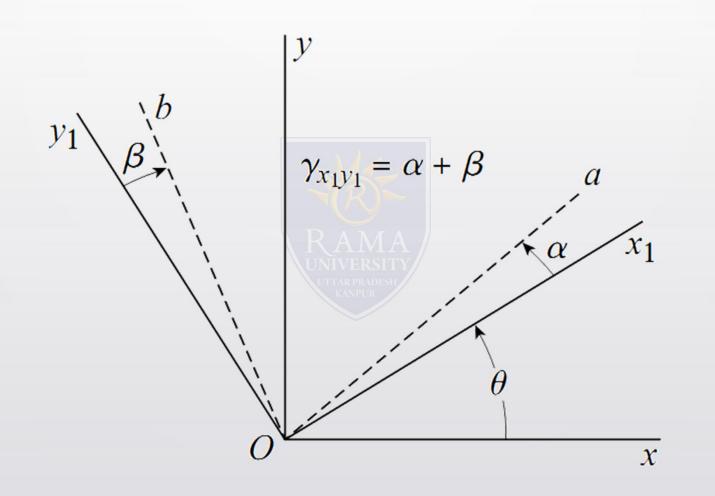
Hence

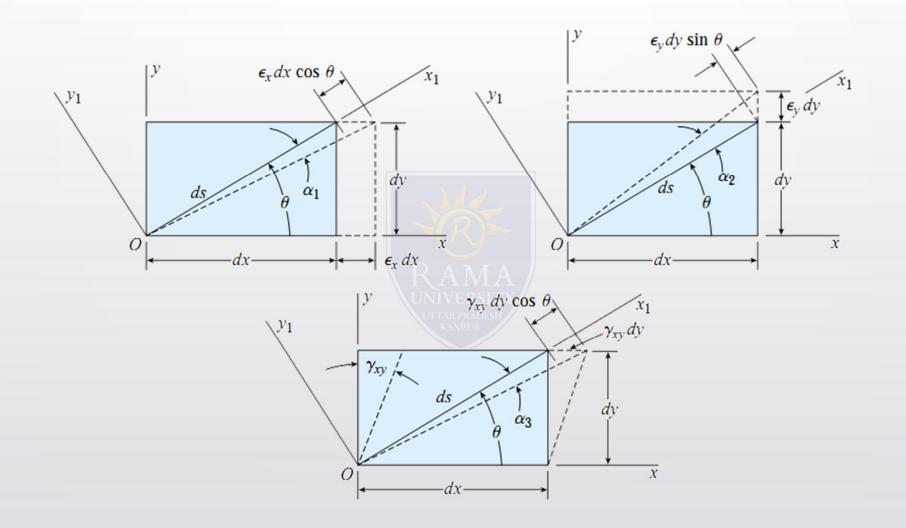
$$\epsilon_{x_1} = \epsilon_x \cos^2 \theta + \epsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$$

If we $\theta = 90^0 + \theta$ in the above equation we will get the value of ϵ_{y_1}

- This strain is equal to the decrease in angle between lines in the material that were initially along the x₁ and y₁ axes.
- From figure, let Oa represent a line that initially was along the x_I axis (that is, along the diagonal of the element.
- ✓ The deformations caused by the strains ϵ_x , ϵ_y and γ_{xy} cause line Oa to rotate through a counterclockwise angle α from the $\mathbf{x}_{\mathbf{l}}$ axis to the position shown.
- \checkmark Similarly, line Ob was originally along the $\mathbf{y_l}$ axis, but because of the deformations it rotates through a clockwise angle β .
- ✓ The shear strain $\gamma_{x_1y_1}$ is the decrease in angle between the two lines that originally were at right angles; therefore

$$\gamma_{x_1y_1} = \alpha + \beta$$





$$\alpha_{1} = \epsilon_{x} \frac{dx}{ds} \sin \theta$$

$$\alpha_{2} = \epsilon_{y} \frac{dy}{ds} \cos \theta$$

$$\alpha_{3} = \gamma_{xy} \frac{dy}{ds} \sin \theta$$

$$\alpha = -\alpha_{1} + \alpha_{2} - \alpha_{3}$$

$$\alpha = -\epsilon_{x} \frac{dx}{ds} \sin \theta + \epsilon_{y} \frac{dy}{ds} \cos \theta - \gamma_{xy} \frac{dy}{ds} \sin \theta$$

$$\alpha = -(\epsilon_{x} - \epsilon_{y}) \sin \theta \cos \theta - \gamma_{xy} \sin^{2} \theta$$

Similarly

$$\beta = -(\epsilon_x - \epsilon_y) \sin \theta \cos \theta + \gamma_{xy} \cos^2 \theta$$
$$\gamma_{x_1y_1} = -2(\epsilon_x - \epsilon_y) \sin \theta \cos \theta + \gamma_{xy} (\cos^2 \theta - \sin^2 \theta)$$

Transformation Equations

$$\epsilon_{x_1} = \frac{\epsilon_x + \epsilon_y}{2} + \frac{\epsilon_x - \epsilon_y}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$
$$\frac{\gamma_{x_1y_1}}{2} = -\frac{\epsilon_x - \epsilon_y}{2} \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta$$
$$\epsilon_{y_1} = \frac{\epsilon_x + \epsilon_y}{2} - \frac{\epsilon_x - \epsilon_y}{2} \cos 2\theta - \frac{\gamma_{xy}}{2} \sin 2\theta$$
$$\epsilon_{x_1} + \epsilon_{y_1} = \epsilon_x + \epsilon_y$$

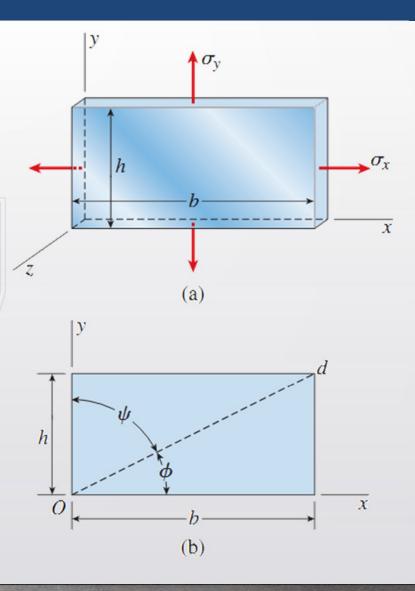
7.7-1 A thin rectangular plate in *biaxial stress* is subjected to stresses σ_x and σ_y , as shown in part a of the figure. The width and height of the plate are b = 190 mm and h = 63 mm, respectively. Measurements show that the normal strains in the x and y directions are $\varepsilon_x = 285 \times 10^{-6}$ and $\varepsilon_y = -190 \times 10^{-6}$, respectively.

With reference to part b of the figure, which shows a two-dimensional view of the plate, determine the following quantities.

(a) The increase Δd in the length of diagonal Od.

(b) The change $\Delta \phi$ in the angle ϕ between diagonal *Od* and the x axis.

(c) The change $\Delta \psi$ in the angle ψ between diagonal *Od* and the y axis.



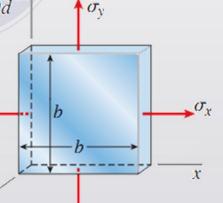
7.7-3 A thin square plate in *biaxial stress* is subjected to stresses σ_x and σ_y , as shown in part a of the figure. The width of the plate is b = 300 mm. Measurements show that the normal strains in the x and y directions are $\varepsilon_x = 427 \times 10^{-6}$ and $\varepsilon_y = 113 \times 10^{-6}$, respectively.

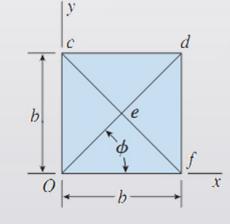
With reference to part b of the figure, which shows a two-dimensional view of the plate, determine the following quantities.

(a) The increase Δd in the length of diagonal *Od*.

(b) The change $\Delta \phi$ in the angle ϕ between diagonal Od and the x axis.

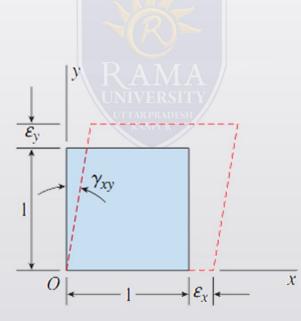
(c) The shear strain γ associated with diagonals *Od* and *cf* (that is, find the decrease in angle *ced*).





7.7-5 An element of material subjected to *plane strain* (see figure) has strains of $\varepsilon_x = 280 \times 10^{-6}$, $\varepsilon_y = 420 \times 10^{-6}$, and $\gamma_{xy} = 150 \times 10^{-6}$.

Calculate the strains for an element oriented at an angle $\theta = 35^{\circ}$. Show these strains on a sketch of a properly oriented element.



 $\sigma_{\rm v}$

h

if $b = 225 \, \text{mm}$,

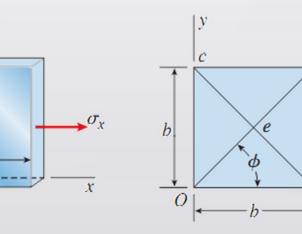
 $\varepsilon_x = 845 \times 10^{-6}$, and $\varepsilon_y = 211 \times 10^{-6}$.

With reference to part b of the figure, which shows a two-dimensional view of the plate, determine the following quantities.

(a) The increase Δd in the length of diagonal Od.

(b) The change $\Delta \phi$ in the angle ϕ between diagonal *Od* and the x axis.

(c) The shear strain γ associated with diagonals *Od* and *cf* (that is, find the decrease in angle *ced*). RAV



d

x

 $\varepsilon_x = 190 \times 10^{-6}, \ \varepsilon_y = -230 \times 10^{-6}, \ \gamma_{xy} = 160 \times 10^{-6}, \ and \ \theta = 40^{\circ}.$

Calculate the strains for an element oriented at an angle $\theta = 35^{\circ}$. Show these strains on a sketch of a properly oriented element.

