

.............

FACULTY OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering

MEPS102:Strength of Material

Lecture 15

Topic: Thin Pressure Vessels: Cylindrical

Instructor:

Aditya Veer Gautam

Pressure Vessels: Recap

- ✓ Pressure vessels are closed structures containing liquids or gases under pressure. These are special case of **plane stress** i.e. $\sigma_{z\ or\ 3}=0$
- ✓ When pressure vessels have walls that are thin in comparison to their overall dimensions, they are included within a more general category known as shell structures.
- ✓ Pressure vessels are considered to be thin-walled when the ratio of radius r to wall thickness t is greater than 10

$$\frac{d}{t} > 20$$
 or $\frac{t}{d} < \frac{1}{20}$

Cylindrical Pressure Vessels

Cylindrical Pressure Vessels

- \checkmark A stress element with its faces parallel and perpendicular to the axis of the tank is shown on the wall of the tank. The normal stresses σ_1 and σ_2 acting on the side faces of this element are the membrane stresses in the wall.
- \checkmark No shear stresses act on these faces because of the symmetry of the vessel and its loading. Therefore, the stresses σ_1 and σ_2 are principal stresses
- \checkmark Because of their directions, the stress σ_1 is called the circumferential stress or the hoop stress, and the stress σ_2 is called the longitudinal stress or the axial stress.
- ✓ Each of these stresses can be calculated from equilibrium by using appropriate free-body diagrams.

Cylindrical Pressure Vessels: Circumferential Stress

✓ To determine the circumferential stress we make two cuts (mn and pq) perpendicular to the longitudinal axis and distance b apart.

✓ Then we make a third cut in a vertical plane through the longitudinal axis of the tank, resulting in the free body

 \checkmark This free body consists not only of the half-circular piece of the tank but also of the fluid contained within the cuts. Acting on the longitudinal cut (plane mpqn) are the circumferential stresses σ_1 and the internal pressure p.

Force due to fluid pressure = Force due to Hoop stress

$$p \times (2rb) = \sigma_1 \times (2bt)$$
$$\sigma_1 = \frac{pr}{t}$$

Cylindrical Pressure Vessels: Longitudinal Stress

The longitudinal stress is obtained from the equilibrium of a free body of the part of the vessel to the left of cross section mn The resultant of the tensile stresses σ in the wall is a horizontal force equal to the stress σ times the area over which it acts

Force due to fluid pressure = Force due to longitudinal stress
$$p\times\pi r^2=\sigma_2\times(2\pi rt)$$

$$\sigma_2=\frac{pr}{2t}$$

Cylindrical Pressure Vessels: Stresses at the Outer Surface

- ✓ The outer surface of a Cylindrical pressure vessel is usually free of any loads. Therefore, the element shown below is in biaxial stress.
- ✓ The x and y axes are tangential to the surface of the sphere, and the z axis is perpendicular to the surface.

$$\sigma_{x} = \sigma_{2}$$
 $\sigma_{y} = \sigma_{1}$

✓ If we analyse the element of by using the transformation equations for maximum in-plane shear stress

$$\tau_{max} = \frac{\sigma_1 - \sigma_2}{2} = \frac{pr}{4t}$$

✓ Maximum out-of-plane shear stress

$$\tau_{max} = \frac{\sigma_1}{2} = \frac{pr}{2t}$$

Cylindrical Pressure Vessels: Stresses at the Inner Surface

$$\sigma_1 = \frac{pr}{t}$$

$$\sigma_2 = \frac{pr}{2t}$$

$$\sigma_3 = -p$$

✓ Maximum shear stress

$$(\tau_{max})_{x} = \frac{\sigma_{1} - \sigma_{3}}{2} = \frac{\sigma + p}{2} = \frac{pr}{2t} + \frac{p}{2}$$

$$(\tau_{max})_{y} = \frac{\sigma_{2} - \sigma_{3}}{2} = \frac{\sigma + p}{2} = \frac{pr}{4t} + \frac{p}{2}$$

$$(\tau_{max})_{x} = \frac{\sigma_{1} - \sigma_{2}}{2} = \frac{pr}{4t}$$

- **8.3-1** A scuba tank (see figure) is being designed for an internal pressure of 12 MPa with a factor of safety of 2.0 with respect to yielding. The yield stress of the steel is 300 MPa in tension and 140 MPa in shear.
- (a) If the diameter of the tank is 150 mm, what is the minimum required wall thickness?
- (b) If the wall thickness is 6 mm, what is the maximum acceptable internal pressure?

- **8.3-2** A tall standpipe with an open top (see figure) has diameter d = 2.2 m and wall thickness t = 20 mm.
- (a) What height h of water will produce a circumferential stress of 12 MPa in the wall of the standpipe?
- (b) What is the axial stress in the wall of the tank due to the water pressure?

- 8.3-5 A strain gage is installed in the longitudinal direction on the surface of an aluminum beverage can (see figure). The radius-to-thickness ratio of the can is 200. When the lid of the can is popped open, the strain changes by $\varepsilon_0 = 170 \times 10^{-6}$.
- (a) What was the internal pressure p in the can? (Assume E = 70 GPa and v = 0.33.)
- (b) What is the change in strain in the radial direction when the lid is opened?

- **8.3-6** A circular cylindrical steel tank (see figure) contains a volatile fuel under pressure. A strain gage at point *A* records the longitudinal strain in the tank and transmits this information to a control room. The ultimate shear stress in the wall of the tank is 98 MPa, and a factor of safety of 2.8 is required.
- (a) At what value of the strain should the operators take action to reduce the pressure in the tank? (Data for the steel are as follows: modulus of elasticity E = 210 GPa and Poisson's ratio v = 0.30.)
 - (b) What is the associated strain in the radial direction?

8.3-12 A pressurized steel tank is constructed with a helical weld that makes an angle $\alpha = 55^{\circ}$ with the longitudinal axis (see figure). The tank has radius r = 0.6 m, wall thickness t = 18 mm, and internal pressure p = 2.8 MPa. Also, the steel has modulus of elasticity E = 200 GPa and Poisson's ratio v = 0.30.

Determine the following quantities for the cylindrical part of the tank.

- (a) The circumferential and longitudinal stresses.
- (b) The maximum in-plane and out-of-plane shear stresses.
 - (c) The circumferential and longitudinal strains.
- (d) The normal and shear stresses acting on planes parallel and perpendicular to the weld (show these stresses on a properly oriented stress element).

